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CHAPTER 1. INTRODUCTION

Translational medical genetics is a cross-disciplinary field of research

that strives to advance genomic medicine using state-of-the-art find-

ings from life sciences. In this thesis, I contribute bioinformatic models,

methods and systems to improve the rate and precision of patient di-

agnoses by harnessing untapped molecular information.

I start this introduction by discussing the origins of the field of

genetics and how it evolved to its current state (1.1). I then zoom

in on medical genetics and explain how our growing understanding of

genetic disorders benefits patients (1.2). Recent revolutions in DNA

sequencing now allow us to complement genetics with genomics, which

is the physical characterization of the genome itself. I explain how this

shift presents medical practice with many exciting opportunities but

also with equally big challenges (1.3) for successful implementation.

These challenges that feed into the research questions addressed in this

thesis (1.4). The introduction ends with an overview of the chapters of

this thesis (1.5). Each chapter presents research that aims to translate

these opportunities into better understanding, diagnosis, and ultimately

treatment of genetic disorders.

1.1 The origin of genetics: solving the ge-

netic riddle piece by “peas”

Just over 150 years ago, Gregor Mendel was the first to describe the

basic rules of genetic inheritance[230]. He discovered striking patterns

in how the traits of pea plants such as color and shape were transmitted

from one generation to the next. His work established genetics as a

science, even though he could not know the molecular basis of his

observations.

It was only decades later that Mendel’s theories were finally recog-

nized, and the term gene was coined[170] as an innate unit of inher-

itance. Genes were defined as the effect observed on the traits (i.e.

phenotype, these and other terms are clarified in Tables 1.1 and 1.2),
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1.1. THE ORIGIN OF GENETICS

and were not yet measured on a molecular level.

Traits may be passed on to the next generation independently from

each other, but some traits seemed to be passed on together with a

certain frequency. The relative distance of the underlying genes could

be estimated by analyzing this effect, called linkage[236], although it

was only realized much later that this is related to physical distance on

a DNA molecule. Further studies showed that genes seemed to direct

enzyme synthesis[24] and that nucleic acid was the carrier of genetic

material[19, 150], not proteins, as was the popular belief1.

How the information of genes was stored in nucleic acid was un-

clear until the physical structure of DNA was elucidated[361]. This

was followed by the cracking of the genetic code[193], specifically how

DNA codon triplets are translated via temporary RNA-based copies into

amino acid sequences that fold into functional proteins. These proteins

are the workhorses of the cell. They communicate with other cells (e.g.

via excretions and receptors), process metabolic substrates (e.g. via

glycolysis) and regulate cell homeostasis (e.g. via signal transduction).

The first completely sequenced genome was that of a virus, Bacte-

riophage MS2, which has just 3,569 DNA bases[101]. When the human

genome sequence was completed in the year 2000[189], it turned out to

have over 3,000,000,000 base pairs2. With this milestone, the field of

human molecular genetics gained huge momentum. Now, traits and dis-

eases could be associated to the actual sequence of DNA instead of an

abstract linkage map or approximate cytogenetic location (observable

chromosomal aberrations leading to a disease phenotype).

1Nevertheless, there are known mechanisms for protein-based inheritance[276, 52]
and cell memory[51].

2The largest reliably measured genome currently known belongs to the Japanese
Canopy plant P. japonica, which has 150,000,000,000 base pairs[258].
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CHAPTER 1. INTRODUCTION

Term Definition

Allele A variant form of a gene or genetic locus

Amino acid Small organic building block of proteins

Base Building block of nucleic acid

Base pair Two bases bound by hydrogen in the DNA

double helix

Chromosome Organizational unit of DNA, humans have 22

pairs plus XX or XY

Codon triplet Sequence of three bases that codes for a

specific amino acid

Complex disease A disease caused by the joined effect of

multiple environmental and genetic factors

Conserved loci Genomic locations that have changed little in

evolution

Diagnostic yield The percentage of solved patient cases

DNA Deoxyribonucleic acid, encodes the genetic

information of an organism

Dominant disease A disease caused by a single pathogenic allele

on one chromosome of a pair

Enzyme synthesis Production of proteins that act in, or execute

chemical reactions

Exon Short for ’expressed region’, coding sections

of a DNA sequence

Genetic code Rules by which nucleic acid is translated into

messenger RNA

Genetic

inheritance

Transmission of inborn traits from parent to

offspring

Genome

sequencing

Determining the order of bases in a genome

Table 1.1: Glossary of key terms used in this introduction, pt. 1/2.
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1.1. THE ORIGIN OF GENETICS

Term Definition

Homeostasis Active regulation to maintain a stable

equilibrium of variables in an organism

Mendelian

inheritance

Set of rules for the basic modes of

inheritance for single-gene diseases

Mutation A change of the nucleotide sequence of the

genome

Non-Mendelian

inheritance

More complex inheritance patterns such as

additive, co-dominance, polygenic,

imprinting or heterosis

Nucleic acid Biopolymer consisting of sugars, phosphates

and nitrogenous bases

Oligogenic A few genes controlling a trait

Penetrance The proportion of individuals adversely

affected by a pathogenic mutation

Phenotype Collection of observable characteristics of an

organism resulting from the interaction of its

genotype with the environment

Polymorphism A neutral and commonly present mutation

Proteins Large biomolecules with a variety of

functions

Recessive disease A disease caused by pathogenic alleles on

both chromosomes of a pair

RNA Ribonucleic acid, predominantly acts as a

messenger carrying instructions from DNA

for controlling protein synthesis

Splicing The process by which exons are joined to

form messenger RNA

Variant General term for all mutations and

polymorphisms

Table 1.2: Glossary of key terms used in this introduction, pt. 2/2.
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CHAPTER 1. INTRODUCTION

1.2 The genome in the clinic

Inheritance patterns of inborn disorders in humans have been stud-

ied since the rediscovery of Mendel’s work, with study focusing mainly

on genes. The first inborn disorder to be described was alkaptonu-

ria[117], a recessive disease with a prevalence of 1:100,000 to 1:250,-

000[382] caused by mutations (i.e. variants, small genetic differences)

in the HGD gene on chromosome 3. There are now around 8,000 such

gene-related disorders catalogued in the OMIM[142], Orphanet[11] and

DECIPHER[102] databases. For about 4,300 of these disorders an as-

sociated gene has been discovered, of which 3,300 are characterized as

clinically actionable to some degree[319].

The majority of clinical genes currently known usually follow a Men-

delian inheritance pattern, because those are more straightforward to

discover and characterize. These Mendelian disease genes are tradi-

tionally discovered by investigating the transmission pattern of specific

mutations through a family pedigree. The top candidates for these con-

firmation studies are usually rare mutations at conserved genomic loci

that strongly coincide with being affected by the disease. After more

independent families or patients have been found with the same symp-

toms and the same mutation or affected gene[317], a causal relation is

established[61].

Finding causal genes is not a trivial effort and additional difficulty

may be introduced by oligogenic inheritance[119], incomplete penetran-

ce[306, 240], or variants that have an unexpected effect[93]. Causal

mutations and genes are catalogued in databases such as Clinical Ge-

nomics Database[319] and ClinVar[190].

Knowing which genes are responsible for disorders provides many

opportunities to improve patient care through applications such as im-

proved disease diagnosis, carrier screening, personalized medicine and

life course advice.

Firstly, we can use genomic knowledge for more accurate disease

diagnosis. For example, there are five subtypes of cardiomyopathies,
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1.2. THE GENOME IN THE CLINIC

with over 60 genes involved[173]. Gene sets specific for a given disease

type are called panels. Gene screening panels have been created for

conditions including dystonia, dermatology, autoinflammatory diseases,

epilepsy, familial cancer, intellectual disability and metabolic disorders.

Finding a pathogenic mutation in one of these genes may lead to a

diagnosis on the molecular level, which is more precise than a diagnosis

based only on symptoms.

The second opportunity to improve healthcare is through carrier

screening, which assesses whether a person is carrying a specific patho-

genic mutation present in their family. A special case of carrier screening

is preconception screening where it is determined whether both parents

carry alleles in the same gene known to cause severe recessive disease.

In this case the parents are not at risk, but a potential child has -

following Mendelian laws - a 25% chance of inheriting both alleles, and

thus being affected.

Lastly, personalized medicine refers to better tailoring of medica-

tion and treatment based on the genotype of the patient. A well-known

example is the adjustment of the starting dose of warfarin depending

the patient’s CYP2C9 and VKORC1 genes[207, 349], which affect their

ability to metabolize this drug.

While DNA analysis was very costly until recently, which limited

analysis to one or a few genes, clinical geneticists can now perform

DNA-sequencing on their patient using a panel of many genes, or choose

to look at all 26,000 genes at once using whole-exome sequencing

(WES), or even consider whole-genome sequencing (WGS), thanks to

next-generation DNA-sequencing techniques (NGS), which has largely

replaced more traditional techniques such as Sanger sequencing[300].

The cost of sequencing a genome with NGS has dropped dramatically,

from $10 million in 2007 to only $1,000 in 20153, paving the way for a

genomic revolution.

WES allows us to investigate thousands of genes at once in research

or diagnostics[378]. This technique is useful for making a genome-

3https://www.genome.gov/sequencingcostsdata/
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CHAPTER 1. INTRODUCTION

driven diagnosis when symptoms are hard to assess, for example in

newborns[348] and other isolated cases[365]. WES allows analysis of

exons and corresponding splice-site regions.

Using WGS we can look at ’non-coding’ DNA, which is not tran-

scribed to protein but is still involved in the regulation of genes. From

application of WGS we now know that non-coding variants are also

implicated in disease[168] and that the genome is organized in topolog-

ical domains[81], structural changes in which are linked to pathogenic

effects[107]. This relatively new area of genomic research is already

becoming of diagnostic relevance[313].

Regardless which technique is used, a molecular diagnosis provides

an unprecedented ability to help patients. Most notably, a diagno-

sis can be established long before symptoms have developed, allowing

recognition and sometimes intervention that may prevent permanent

damage[302]. In all cases, a more informed diagnosis will lead to a

clearer prognosis and more appropriate treatment plan based on the

molecular etiology of the disease. However, when using genome-wide

screening approaches, incidental findings have to be dealt with[134], as

they can cause serious issues including a high patient opt-out rate[146].

1.3 Data interpretation challenges

Although genetic screening is successfully employed in many clinics

around the world, we now effectively use only a minute amount of

the genetic knowledge contained within the data generated. For most

of the genes, and for almost all of the non-coding genome, we do not

know the clinical relevance. A genetic cause has been established for

only about half of the known Mendelian disorders, and we are only just

starting to understand complex diseases[224]. Even within the known

genes, it is not always clear if a mutation is harmful[67, 54]. As a re-

sult, the interpretation and subsequent classification of DNA variants is

a major challenge.
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The difficulty of this challenge is shown by the diagnostic yields

currently achieved, which vary from 15 to 80%[356, 221, 74, 380]

depending on factors such as disease type, patient inclusion criteria

and sequencing technique used. This challenge is further shown by

the discordant results given by direct-to-consumer genomic analysis

companies[69] and by the re-classification of pathogenic variants as

harmless when more data becomes available[49].

Furthermore, the production of genomic data is far outpacing the

rate at which geneticists can interpret it, a circumstance referred to as

the ’NGS data deluge’[303]. Big data analytics is thus a major challenge

in healthcare[280, 26], as are related efforts to translate research data

and research findings into healthcare improvements[9, 17]. This is espe-

cially true for the area of medical genetics[124, 359, 34]. Adding more

layers of molecular information, such as transcriptomics or epigenetics,

only makes sense when combined with infrastructure and analysis meth-

ods that use these data to make clinical decisions easier instead of more

complicated.

Computers can help us integrate and analyze large and complex

data, provided appropriate software is available to do so. The field of

bioinformatics develops these tools, but it takes more than a few lines of

code to improve patient care. This barriers for setting up infrastructure

can be broken down into effective data integration, method development

and implementation into practice. In this thesis we identify and address

the following challenges:

1. We need data models to integrate life science data for genetic

disease research. By systematically integrating and visualizing

large amounts of data sets, we allow researchers to discover new

disease genes. These genes can then be tested in patients, leading

to higher diagnostic yield.

2. We need computational methods to translate research findings

to medical genetics. Many research findings are of potential ben-

efit to patient care, but they require tailoring, calibration and
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CHAPTER 1. INTRODUCTION

validation into a clinical genomics context before they can be

used. Using more advanced analysis methods will result in more

accurate and efficient characterization of patient mutations.

3. We need software systems to implement methods into medical

genetics practice. These systems are needed to test, validate and

utilize new methods and must be flexible enough to allow quick

adoption of future developments, including new methods and data

modalities.

1.4 Bioinformatic opportunities

Empowering clinical geneticists with the tremendous amount and variety

of new life science data is the huge challenge that forms the objective

of this thesis. Basic science in biology and genetics includes studies

on model organisms, human populations, creation of computational al-

gorithms and the molecular characterization of cells and tissues, and

all these types of research present possibilities to improve patient di-

agnoses. At the same time, medical practice offers invaluable insights

about disease etiology, patient cases, and data gathered in a clinical set-

ting that can be used to develop and validate new methods for medical

application. All these new data offer major opportunities for finding,

understanding and treating human disease. Figure 1.1 illustrates the

efforts and collaborations in the translational research needed to real-

ize this potential. In the paragraphs below and more detailed sections

devoted to them that follow, we introduce the key research topics that

are the focus of this thesis:

Reference genomes - Population studies can tell us what to expect in

the average individual. Through phenotypic and molecular characteriza-

tion of large groups of healthy individuals, we can establish a reference

population. Strong deviation from this reference may point towards

causal mechanisms of molecular disease for more severe disorders that

are highly damaging or otherwise debilitating at a younger age.
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Figure 1.1: Overview of bioinformatic infrastructure for translational science.

Fundamental knowledge originates in basic research (red). Translational re-

search (yellow) bridges the gap between basic research and medical practice

(blue) by collaborative efforts from all parties involved.
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Association studies - Patient studies can tell us how disorders origi-

nate. While studying small numbers of individuals can still uncover new

Mendelian disease genes[371], larger number of patients are required for

statistical association of new disease candidate genes with less obvious

effects[197]. By using extremely large sample sizes, we can also detect

genetic associations for complex but more common afflictions such as

celiac disease or obesity.

Additional molecular data - The genome is the prime information

carrier within a living cell, but many more molecular levels stand between

the DNA sequence and the eventual expression of a phenotype. By

measuring these different levels we can attempt to reconstruct both the

lateral interactions (protein-protein interactions or gene co-expression

networks) and perpendicular interactions (protein binding to the genome

to silence expression or metabolite accumulation causing neurodegener-

ation), which can help to understand the workings of disease in detail.

Computational and ’big data’ approaches - The rich collection of

current life science data provides great opportunities for the develop-

ment of smart software programs, computational algorithms and sta-

tistical tools that can extract knowledge from these growing data re-

sources. These must perform a multitude of roles and functions, in-

cluding cleaning and quality control of raw data, imputing missing data

points, finding statistical associations, modeling and running predic-

tors, or constructing and pruning networks of detected relations. In the

following paragraphs I will explore these opportunities in detail.

1.4.1 Population reference genomes

Genomes are relatively similar between individuals, therefore, instead of

assembling the complete sequence for each person, we only determine

points of DNA variation compared to a reference genome. Subsequently,

we can aggregate the results by counting how often each point of varia-

tion was observed. This allows us to store the information of thousands

of genomes in files that are still quite computationally manageable and
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require smaller amounts of data storage capacity. There are a number

of initiatives that have collected the DNA variation of healthy individ-

uals, such as the Thousand Genomes project[63] (2,504 genomes), the

Genome of the Netherlands[244] (750 genomes), the Exome Aggrega-

tion Consortium[196] (60,706 exomes), the NHLBI Exome Sequencing

Project[95] (6,503 exomes) and the upcoming gnomAD from the ExAC

authors[196] (126,216 exomes and 15,137 genomes). Here, the term

“healthy” refers to individuals who do not suffer from a severe inborn

disorder. They may still develop common late-onset diseases with ge-

netic components such as type 2 diabetes, cardiovascular problems,

obesity or common forms of cancer.

These large reference sets find eager uptake in all areas of genetics

including research and genome diagnostics. Variants observed to have

a high allele frequency in a population of individuals are called poly-

morphisms. Such polymorphisms are very unlikely to directly cause a

disease, although they might still act as modifiers (or markers) for dis-

ease risk[82]. We may apply a filter based on Minor Allele Frequency

(MAF): the alternative allele fraction compared to the most frequent

reference allele. A typical setting may be to exclude any variant from

further analysis of a patient’s genome when it occurs more than 1%

in the general population. Depending on the rarity and severity of a

disease, we may want to use thresholds as low as 0.01% (see chap-

ter 6) and as high as 5%[326]. We can also use the genotype zygocity

counts, which is the number of individuals heterozygous or homozygous

for an allele. If only heterozygous genotypes are observed in the general

healthy population, we may be dealing with a recessive-acting disease

variant, which quickly becomes a candidate for being pathogenic when

detected homozygously in a patient.

As other types of population reference data becomes available, e.g.

from RNA-sequencing[78], we have the opportunity to also establish a

baseline for healthy individuals for data other than DNA variation. We

can use these references to investigate and manually predict potential

pathogenic effects in patients and capture the outcomes. These results
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are then used to develop tools to speed up the interpretation of new

patient data and initiate a synergistic process leading to exponential

tool development.

Furthermore, big population data provide insight into our genomic

architecture. The mention of Mendelian disease genes may give the

impression that our genomes are fragile, but there is also evidence that

shows they are surprising resilient. Each healthy human has about 100

Loss of Function (LoF) variants with 20 genes completely inactiva-

ted[215]. We now have enough reference data to calculate an accurate

LoF rate for every gene[196], and this rate may be compared to a null

distribution to determine which genes are LoF-tolerant and which are

not. Any LoF-intolerant genes found in patients with severe mutations

can then be prioritized as potentially disease-causing. By analyzing the

selection pressure on truncating variants we can then characterize genes,

and estimate whether one or two dysfunctional alleles are likely to be

disease causative[50].

Lastly, these large reference sets have put things in new perspec-

tive. Some variants that were previously thought to be surely disease-

causing were found to have low penetrance, meaning that not every

individual with that mutation actually becomes ill[234]. Other vari-

ants once thought to have pathogenic effects have turned out to be

far too common with respect to disease prevalence, revealing them as

false positives[354]. Finally, on a more critical note, ethnicity biases in

these reference sets may result in misclassifications[220], indicating a

need for more diverse and representative data sets to be used in genome

diagnostic interpretation.

1.4.2 Genomic association studies

In Mendelian or monogenic genetic disorders, a single dysfunctional

gene can cause severe problems. There are, however, numerous disease-

related phenotypes that are not attributable to just one or a few genes.

Instead, many locations (or loci) on the genome seem to each contribute
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a small amount to the risk of the disease[224, 219, 35]. Finding these

weak associations requires large Genome-Wide Association Studies or

GWAS which may include more than 250,000 participants[374]. These

large samples sizes can be achieved by genotyping arrays which can

cheaply ascertain alleles of a predetermined set of variants.

In human, we have currently discovered about 30,000 trait-genome

associations[363]. While these include general traits like word read-

ing ability, alcohol consumption, hair color, height, and freckling, most

traits are of medical relevance and include susceptibility to common

diseases such as hypertension, arthritis, celiac disease, cancer subtypes,

diabetes, cardiovascular disease, ulcerative colitis, obesity, allergies, pso-

riasis and asthma.

Establishing these associations is important for several reasons. Most

notably, the locations where they are found implicate nearby genes that

may be involved, making these genes the best candidates for further

study. However, genes must be carefully considered because the clos-

est gene is often not relevant and statistical approaches have been

developed[389] to identify the strongest candidate in the region.

Another application of GWAS associations is modeling of genetic

risk scores. The effect size of the risk-associated alleles that an individ-

ual is harboring can be summed to a genetic risk score[84]. This risk, by

definition, correlates to either the chance of developing a certain disease

or the occurrence of a clinical event[217], but genetic risk scores can

also predict the quantitative severity of a clinical phenotype[27].

Based on a higher risk score, individuals may choose to undergo

a specific medical check regularly, or adjust their lifestyles to improve

their odds of not developing a certain disease. Conversely, individuals

with strong protective alleles might need fewer periodic examinations

than usual, allowing physicians to spend more time on people with a

higher risk.
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1.4.3 Additional molecular data

Beyond the DNA sequence, much additional molecular data can now be

gathered that can be used to identify which DNA variations are relevant

for health and disease, and which are not. Regulation of gene transcrip-

tion, translation, protein activity and degradation constantly takes place

at between different molecular levels. For instance, the genes on the

genome itself can be made harder to transcribe through methylation of

the cytosine and adenine nucleotides[31]. In addition, the chromosomal

structure of DNA can be decondensated by histone acetylation (trans-

fer of acetyl groups to DNA organizational elements), making it more

accessible for transcription[87]. The transcriptional expression of genes

is further regulated by genetic variants themselves[7]. Finally, proteins

form a complex network of interactions[265] that, in turn, also regulate

gene expression[331].

We study the complex patterns of this regulation to understand how

genes act in concert, and how a disease phenotype presents in cells, tis-

sues and organisms. Large initiatives that pursue this goal include stud-

ies into expression quantitative trait loci (eQTL)[364] and allele-specific

expression[78], characterization of functional genomic elements includ-

ing methylation and acetylation patterns[85], comprehensive expression

studies across different tissues[213] and cell types[105].

These same kinds of studies can also be performed on model or-

ganisms, which can be bred and measured in highly controlled environ-

ments for pin-point phenotypic and molecular characterization. Studies

on mice have been an essential tool for biological research for more than

a century and continue their important role today[264]. Mice are evolu-

tionarily relatively close to humans, and their size and short generation

time allows experiments to be set up and run with large enough num-

bers for statistical significance. However, other types of model organ-

isms such as zebrafish[206] and worm[176] can offer unique advantages

over using rodents. While these organisms have a larger evolutionary

distance to humans, they are cheaper, faster and easier to breed and
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have transparent bodies that are easy to dissect. The tiny C. elegans

worm has by far the fastest life cycle, simplest anatomy and the unique

property of strains that can be frozen and revived.

In addition to transcriptomics and epigenetics, we can also measure

the levels of metabolites and proteins present in cells. These technolo-

gies, known as metabolomics and proteomics, can be integrated with

genomics data[132] to obtain a more complete understanding of the

complex processes in the cell that interplay with all these layers. Finally,

we can also investigate the genomic variation that prevents disease or

even increase our health instead of looking for genes that make people

ill. The search for so-called ’protective alleles’ is an up and coming area

of study that will also result in healthcare advancements[145].

1.4.4 Computational and ’big data’ approaches

Measuring and interpreting the large, complex and diverse life-science

datasets has driven the development of a plethora of new computational

methods and tools to analyze these data. These include methods to

clean and prepare data for analysis, advanced statistical methods, re-

lational databases, web applications, data integration and visualization

tools.

A few notable examples include the Variant Quality Score Recalibra-

tion (VQSR), a module of the Genome Analysis Toolkit (GATK)[344].

This tool performs comparative machine learning on identified (called)

NGS variants versus a reference truth set to find the optimal variables

for determining which variants are true positives and which are false.

Variants can also be determined using genotyping platforms, but

when multiple platforms are used, data are not comparable. However,

they can be harmonized by inferring missing variants using genotype

imputation[77], which also uses reference knowledge.

After variants are determined, there are many tools that estimate

variant pathogenicity to assist genome diagnostics or research into ge-

netic diseases[90]. A powerful method to prioritize variants for further
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interpretation are CADD scores[185]. These scores are a measure of

evolutionary pressure on genetic variants that builds upon 60+ existing

tools and sources. Variants with a higher score are more likely to be

deleterious and are therefore the best candidates in disease research.

Using CADD scores, variants are discovered in genes of which the

function is not yet known. Knowledge networks such as GeneMA-

NIA[360] may help to infer a putative function by linking unknown

genes to genes known from previous studies to show a similar expres-

sion pattern. We can also characterize unknown genes by their evolu-

tionary, loss-of-function and network interaction properties to prioritize

candidate variants[184] and even predict disease inheritance mode to a

certain degree[153].

Taking this approach a step further, GeneNetwork[99] is constructed

from co-regulation patterns found within tens of thousands of samples

for which gene expression was measured. GeneNetwork provides un-

precedented resolution and predictive power across multiple cell types

and tissues. Analogous to discovering patterns in expression data, the

network of protein-protein interactions can also be computationally pre-

dicted using various methods[381].

The combined current knowledge of how cells control functions

such as growth, movement, differentiation, metabolism, communica-

tion, and response to stress or pathogens is captured in high-level path-

way databases such as WikiPathways[188], Reactome[97] or KEGG[180].

Taken together, these tools provide important clues for wet-lab stud-

ies, which then in turn provide better and more meaningful biological

measurements that can help to develop new and improved methods.

1.5 Thesis outline

In this thesis I show how, by addressing data challenges and bioinfor-

matics opportunities in translational infrastructure, we can advance our

genetic knowledge and its application in medical genetics. The focus
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of the first two chapters is on models that integrate life science data

as a basis for finding new gene-disease associations. I then develop

methods to discover leads for human disease and utilize pathogenicity

estimates for clinical application. Finally, I implement software systems

that translate what we have learned to medical genetics practice. An

overview of the chapter progression in this thesis is shown in Figure 1.2.

1.5.1 New models to integrate life science data for
genetic disease research (chapters 2 and 3)

There are many approaches for gathering, structuring, integrating and

analyzing life science data, each best suited to test a specific hypothe-

sis[290]. To help domain experts test new ideas and quickly interpret

interesting findings, they should be able run the necessary queries, tools

and visualizations themselves. To achieve this, the underlying data has

to be both properly modeled (’computer-readable’) and fortified with

enough metadata to describe what the data means[366] so that it can

be automatically addressed by applicable tools.

As data volumes grow ever larger, these tools have to be executed

on external high-throughput computational environments such as multi-

node computer clusters. To facilitate storage of these huge datasets

and parallelized computation, we investigated how to store complex

data using the flexible XGAP model in chapter 2, and used this as a

basis to develop xQTL workbench in chapter 3. xQTL workbench is a

flexible database system designed to store any genotype and phenotype

information with basic visualization and computational capabilities.

1.5.2 New methods to translate research findings to
medical genetics (chapters 4 and 5)

Translational medicine investigates how relevant new findings can be

used to improve patient diagnosis and care. To demonstrate how new

findings can be generated, we loaded almost 100 data sets of C. elegans
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Chapter 3

xQTL workbench: a scalable web
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Chapter 5
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Figure 1.2: Overview of thesis chapter progression in terms of type of output

and area of application. We can define an overall gradient from fundamental

science to medical practice, as well as transitions from models to integrate life

science data towards methods to translate discovered knowledge and systems

to implement new methods into patient care.
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into an xQTL database, containing around 300 million measurements.

To show value for human health applications, we connected worm phe-

notypes to human disease at a molecular level using protein orthology.

Chapter 4 shows how these data can now be used to find models and

leads for human disease research. Furthermore, a biologist-friendly on-

line environment enables the research community to join in and dig

through the data.

Interesting findings need to be explored further and placed into clin-

ical context before medical genetics can benefit from them. The pre-

viously mentioned CADD scores[185] are an example of an innovation

with great potential. Doctors and clinical geneticists have an interest

in such developments, but cannot use it in practice without guidelines

about how to interpret these scores in patient cases. To explore how

such a guideline is created and used, we translated CADD scores to the

clinical classification of variants in mismatch repair genes in chapter

5. These genes may harbor variants that cause hereditary colorectal

cancer. By characterizing these scores in this context, we learned both

their pitfalls and how they can be used to prioritize new mutations or

double-check existing classifications.

1.5.3 New systems to implement methods into med-
ical genetics practice (chapters 6 and 7)

Large reference datasets and computational resources, when guided by

translational research, should allow us to transform patient care. To

facilitate this, we need to design, build and maintain reliable software

systems[274] running on a stable server and database infrastructure[329].

These systems must handle rapidly increasing quantities of whole-ge-

nome data as sequencing costs dropped from a billion dollars to just a

thousand dollars per patient. The data produced needs to be contrasted

against large population reference sets and other patient genomes for re-

search, interpretation or diagnosis using computational methods. The

storage, processing and filtering solutions for these massive datasets
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need the capabilities to be scaled up, fine-tuned and clinically validated

accordingly.

Encouraged by results of chapter 5, we generalized the CADD score

calibration approach and applied it to >3,000 disease genes. We em-

phasize practical use by excluding variants that would also excluded by

existing methods. On the variants that remain that are hard to inter-

pret, we find out if CADD scores can be of further help. The resulting

predictor tool, GAVIN, is described in chapter 6 and works remarkably

well for clinically characterized genes. It serves as a first-lead causal

variant screening tool with broad application in clinical genomics.

This work then feeds into chapter 7, where we define a framework

to automate the interpretation of genomic data, and to fast-track in-

novations in this process. We implement the GAVIN+ interpretation

tool, which combines GAVIN with additional knowledge and criteria

from clinical genetics to quickly identify variants and genotypes that

are potentially disease-causing. This tool outputs its result in the new

rVCF (Report VCF) format, which captures any relevant analysis re-

sults along with detailed provenance information and the reason why a

variant is of interest.

Using this format, we can run fast validation on known pathogenic

variants and estimation of false discovery rate on healthy control sam-

ples. The final result can be visualized in a customizable doctor-friendly

report, analyzed further as the format is fully compliant with existing

tools, and shared with peers. The modular framework design separates

the enrichment, interpretation and visualization of the data.

Our proposed solution is flexible and maintainable and its standard-

ized formats allows the community to develop focused software tools

that produce and utilize these files. As a result, newly developed meth-

ods can be quickly adapted and validated within local installation of the

framework. This high-throughput infrastructure will speed up molecu-

lar diagnostic practice, and prepare it for seamless future integration of

new analysis methods and powerful new omics techniques.
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* Corresponding author.

Abstract

We present an extensible software model for the genotype and pheno-

type community, XGAP. Readers can download a standard XGAP (htt

p://www.xgap.org) or auto-generate a custom version using MOL-

GENIS with programming interfaces to R-software and web-services or

user interfaces for biologists. XGAP has simple load formats for any

type of genotype, epigenotype, transcript, protein, metabolite or other

phenotype data. Current functionality includes tools ranging from eQTL

analysis in mouse to genome-wide association studies in humans.

2.1 Background

Modern genetic and genomic technologies provide researchers with un-

precedented amounts of raw and processed data. For example, recent

genetical genomics[204, 167, 200] studies have mapped gene expres-

sion (eQTL), protein abundance (pQTL) and metabolite abundance

(mQTL) to genetic variation using genome-wide linkage and genome-

wide association experiments on various microarray, mass spectrome-

try and proton nuclear magnetic resonance (NMR) platforms and in

a wide range of organisms, including human[88, 141, 80, 325, 148],

yeast[37, 106], mouse[45], rat[156], Caenorhabditis elegans[205] and

Arabidopsis thaliana[182, 183, 110].

Understanding these and other high-tech genotype-to-phenotype

data is challenging and depends on suitable ‘cyber infrastructure’ to

integrate and analyze data[322, 98]: data infrastructures to store and

query the data from different organisms, biomolecular profiling tech-

nologies, analysis protocols and experimental designs; graphical user

interfaces (GUIs) to submit, trace and retrieve these particular data;

communicating infrastructure in, for example, R[158], Java and web
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services to connect to different processing infrastructures for statistical

analysis[48, 8, 111, 30, 38] and/or integration of background informa-

tion from public databases[311]; and a simple file format to load and

exchange data within and between projects.

Many elements of the required cyber infrastructure are available:

The Generic Model Organism Database (GMOD) community developed

the Chado schema for sequence, expression and phenotype data[237]

and delivered reusable software components like gbrowse[321]; the Bio-

Conductor community has produced many analysis packages that in-

clude data structures for particular profiling technologies and experi-

mental protocols[121]; and numerous bespoke databases, data models,

schemas and formats have been produced, such as the public and pri-

vate microarray expression databases and exchange formats[36, 299,

115]. Some integrated cyber infrastructures are also available: the Na-

tional Center for Biotechnology Information (NCBI) has launched db-

GaP (database of genotypes and phenotypes)[216], a public database

to archive genotype and clinical phenotype data from human studies;

and the Complex Trait Consortium has launched GeneNetwork[57], a

database for mouse genotype, classical phenotype and gene expression

phenotype data with tools for ‘per-trait’ quantitative trait loci (QTL)

analysis.

However, a suitable and customizable integration of these elements

to support high throughput genotype-to-phenotype experiments is still

needed[340]: dbGaP, GeneNetwork and the model organism databases

are designed as international repositories and not to serve as general

data infrastructure for individual projects; many of the existing bespoke

data models are too complicated and specialized, hard to integrate be-

tween profiling technologies, or lack software support to easily connect

to new analysis tools; and customization of the existing infrastructures

dbGaP, GeneNetwork or other international repositories[384, 154] or

assembly of Bioconductor and generic model organism database com-

ponents to suit particular experimental designs, organisms and biotech-

nologies still requires many minor and sometimes major manual changes
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in the software code that go beyond what individual lab bioinformati-

cians can or should do, and result in duplicated efforts between labs if

attempted.

To fill this gap we here report development of an extensible data

infrastructure for genotype and phenotype experiments (XGAP) that is

designed as a platform to exchange data and tools and to be easily cus-

tomized into variants to suit local experimental models. We therefore

adopted an alternative software engineering strategy, as outlined in our

recent review[329], that enables generation of such software efficiently

using three components: a compact and extensible ‘standard’ model

of data and software; a high-level domain-specific language (DSL) to

simply describe biology-specific customizations to this software; and a

software code generator to automatically translate models and exten-

sions into all low-level program files of the complete working software,

building on reusable elements such as listed above as well as general

informatics elements and some new/optimized elements that were miss-

ing.

Below we detail XGAPs extensible ‘standard’ software model (XGAP-

OM) and evaluate the auto-generated text file exchange format (XGAP-

TAB) and customizable database software (XGAP-DB) that should help

researchers to quickly use and adapt XGAP as a platform for their ge-

netics and/or *omics experiments (Table 2.1). Harmonized data repre-

sentations and programmatic interfaces aim to reduce the need for mul-

tiple format convertors and easy sharing of downstream analysis tools

via a hub-and-spoke architecture. Use of software auto-generation, im-

plemented using MOLGENIS, aims to ease and speed up customiza-

tion/variation into new XGAP versions for new biotechnologies and al-

ternative experimental designs while ensuring consistent programming

interfaces for the integration and sharing of existing analysis tools. Stan-

dardized extension mechanisms should balance between format/inter-

face stability for existing data types and tools, and flexibility to adopt

new ones.
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Store Store genotype and phenotype experimental data using only four
‘core’ data types: Trait, Subject, Data, and DataElement. For
example: a single-channel microarray reports raw gene expression
Data for each microarray probe Trait and each individual Subject.
Add information on data provenance by giving details in Investiga-

tion, Protocols and ProtocolApplications

Customize Customize ‘my’ XGAP database with extended variants of Trait

and Subject. In the online XGAP demonstrator, Probe traits have
a sequence and genome location and Strain subjects have parent
strains and (in)breeding method. Describe extensions using MOL-
GENIS language and the generator automatically changes XGAP
database software to your research

Upload Upload data from measurement devices, public databases, collabo-
rating XGAP databases, or a public XGAP repository with commu-
nity data. Simply download trait information as tab-delimited files
from one XGAP and upload it into another; this works because of
the uniformity of the core data types (and extensions thereof)

Search Search genetical genomics data using the graphical user interface
with advanced query tools. The uniformity of the ‘code generated’
interfaces make it easy to learn and use interfaces for both ‘core’
data types as well as customized extensions

Analyze Analyze data by connecting tools using simple methods in Java, R,
Web Services or Internet hyperlinks. For example, map and plot
quantitative trait loci in R using XGAP data retrieved via the R
interface

Plug-in Plug-in the best analysis tools into the user interface so biologists
can use them. Bioinformaticians are provided with simple mech-
anisms to seamlessly add such tools to XGAP, building on the
automatically generated GUI and API building blocks

Share Share data, customizations, connected analysis tools and user in-
terface plug-ins with the genetical genomics community, using
XGAP as exchange platform. For example, the MetaNetwork R
package can talk to data in XGAP. This makes it easy for other
XGAP owners to also use it

API: application programming interface; GUI: graphical user interface; MOL-

GENIS: biosoftware generator for MOLecular GENetics Information Systems.

Table 2.1: Features of XGAP database for genotype and phenotype experi-

ments.
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2.2 Minimal and extensible object model

We developed the XGAP object model to uniformly capture the wide va-

riety of (future) genotype and phenotype data, building on generic stan-

dard model FuGE (Functional Genomics Experiment)[171] for describ-

ing the experimental ‘metadata’ on samples, protocols and experimental

variables of functional genomics experiments, the OBO model (of the

Open Biological and Biomedical Ontologies foundry for use of standard

and controlled vocabularies and ontologies that ease integration[314],

and lessons learned from previous, profiling technology-specific model-

ing efforts[36].

Figure 2.1b shows the core components of a genotype-to-phenotype

investigation: the biological subjects studied (for example, human indi-

viduals, mouse strains, plant tissue samples), the biomolecular protocols

used (for example, Affymetrix, Illumina, Qiagen, liquid chromatography-

mass spectrometry (LC/MS), Orbitrap, NMR), the trait data generated

(usually data matrices with, for example, phenotype or transcript abun-

dance data), the additional information on these traits (for example,

genome location of a transcript, masses of LC/MS peaks), the wet-lab

or computational protocols used (for example, MetaNetwork[111] in the

case of QTL and network analysis) and the derived data (for example,

QTL likelihood curves).

We describe these biological components using FuGE data types

and XGAP extensions thereof. Investigation binds all details of an in-

vestigation. Each investigation may apply a series of biomolecular[41]

and computational[48, 8, 111, 30] Protocols. The applications of such

Protocols are termed ProtocolApplications, which in the case of com-

putational Protocols may require input Data and will deliver output

Data. These Data have the form of matrices, the DataElements of

which have a row and a column index. Each row and column refers to

a DimensionElement, being a particular Subject or a particular Trait.

Table 2.2 illustrates the usage of these core data types.

Figure 2.1a, c shows how the XGAP model can be extended to ac-
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CHAPTER 2. XGAP MODEL FOR GENOTYPE AND PHENOTYPE

Figure 2.1: Extensible genotype and phenotype object model. Experimental genotype and
(molecular) phenotype data can be described using Subject, Trait, Data and DataElement; the
experimental procedures can be described using Investigation, Protocol and ProtocolApplica-
tion (b). Specific attributes and relationships can be added by extending core data types, for
example, Sample and Gene (a, c). See Table 2.2, 2.3 and 2.4 for uses of this model. The model
is visualized in the Unified Modeling Language (UML): arrows denote relationships (Data has a
field Investigation that refers to Investigation ID); triangle terminated lines denote inheritance
(Metabolite inherits all properties ID, Name, Type from Trait, next to its own attributes Mass,
Formula and Structure); triangle terminated dotted lines denote use of interfaces (Probe ’im-
plements’ properties of Locus); relationships are shown both as arrows and as properties (’xref’
for one-to-many, ‘mref’ for many-to-many relationships). Asterisks mark FuGE-derived types
(for example, Protocol*).
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A growth measurement (Data) reports the time (DataElement) it

took to flower (Trait) for an Arabidopsis plant (Subject)

A two-color microarray result (Data) describes raw intensities

measured (DataElement) for gene transcript probe hybrdization

(Trait) for each pair of Arabidopsis individuals (Subject)

A marker measurement (ProtocolApplication) resulted in a genetic

profile (Data) with genotype values (DataElement) for each

SNP/microsatellite marker (Trait) for each human individual

(Subject)

A genetical genomics stem cell Investigation was carried out on 30

recombinant mouse inbred strains (Subject). It involved a

ProtocolApplication of the ‘Affymetrix MG-U74Av2’ Protocol to

produce expression profiles (Data) for 12,422*16 microarray probes

(Traits). These profiles consisted of a matrix of signals

(DataElement) for each Probe (Traits) and each InbredStrain

(Subject). Subsequently, these Data were taken as inputData in a

normalization procedure (ProtocolApplication) using RMA

normalization Protocol, which resulted in outputData of normalized

profiles (Data) of Probe*InbredStrain (Trait*Subject)

RMA: robust multi-array average.

Table 2.2: Use cases of core data types.
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commodate details on particular types of subjects and traits in a uniform

way. A Trait can be a classical phenotype (for example, flowering - the

flowering time is stored in the DataElement) or a biomolecular pheno-

type (for example, Gene X - its transcript abundance is stored in the

DataElement). A Trait can also be a genotype (for example, Marker

Y is a genomic feature observation that is stored in the DataElement).

Genomic traits such as Gene, Marker and Probe all need additional

information about their genome Locus to be provided. Similarly, a

Subject can be a single Sample (for example, a labeled biomaterial as

put on a microarray) and such a sample may originate from one partic-

ular Individual. It may also be a PairedSample when biomaterials come

from two individuals - for example, if biomaterial has been pooled as

in two-color microarrays. An individual belongs to a particular Strain.

When new experiments are added new variants of Trait and Subject

can be added in a similar way. Table 2.3 illustrates the generic usage

of these extended data types.

Several standard data types were also inherited from FuGE to enable

researchers to provide ‘Minimum Information’ for QTLs and Associa-

tion Studies such as defined in the MIQAS checklist[104] - a member

of the Minimum Information for Biological and Biomedical Investiga-

tions (MIBBI) guideline effort[335]. Data types Action(Application),

Software(Application), Equipment (Application) and Parameter(Value)

can be used to describe Protocol(Application)s in more detail. For

example, a normalization Protocol may involve a ‘robust multiarray av-

erage (RMA) normalization’ Action that uses Bioconductor ‘affy’ Soft-

ware[161] with certain ParameterValues. Data types Description, Bib-

liographicReferences, DatabaseEntry, URI, and FileAttachment enable

researchers to freely add additional annotations to certain data types

- DimensionElement, Investigation, Protocol, ProtocolApplication, and

Data. For example, researchers can annotate a Gene with one or more

DatabaseEntries, referring to unique database accession numbers for

automated data integration.

A unique feature of XGAP is the uniform treatment of the various
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Sample is a Subject with the additional property that ‘Tissue’ can

be specified

Individual is a Subject with the additional property that

relationships with Mother and Father individuals, as well as Strain,

can be specified

PairedSample is a Sample with the additional property that ‘Dye’

has to be specified and which two Subjects (or subclasses such as

Individual) are labeled with ‘Cy3’ and ‘Cy5’

An InbredStrain is a Strain with the additional property that the

‘Parents’ (mother Individual and father Individual) are specified and

the ‘type’ of inbreeding used

An amplified fragment length polymorphism, microsatellite or SNP

Marker (is a Trait) may refer to genetic and possible genomics

location (Marker also is a Locus)

A correlation computation (Data) reports associations

(DataElement) between Metabolite (is a Trait); because Trait and

Subject are both extensions of DimensionElement, they can be

connected to a row and column of DataElement interchangeably

Table 2.3: Use cases of extended data types.
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trait and subject annotations. The drawback of allowing users to freely

add additional annotations such as described above is that users and

tools using metabolite and gene traits, for example, would have to in-

spect each Trait instance to see whether it is actually a metabolite or

gene, and how it is annotated. That is why we instead use the object-

oriented method of ‘inheritance’ to explicitly add essential properties to

Trait and Subject variants to make sure that they are described in a

uniform way. For example, Metabolite extends Trait, which explicitly

adds properties ID, Name and Type (inherited from DimensionElement)

to metabolite specific properties Mass, Formula and Structure. See

Jones et al.[171] for the complete FuGE specifications and Jones and

Paton[172] for a discussion on the benefits and drawbacks of alterna-

tive mechanisms for supporting extension in object models. Table 2.4

illustrates the usage of these annotation data types.

Another feature of XGAP is the uniform treatment of all data on

these subjects and traits. To understand basic data in XGAP, newcom-

ers just have to learn that all data are stored as Data matrices with each

DataElement describing an observation on Subjects and/or Traits (rows

× columns). Unlike the proven matrix structures used in MAGE-TAB

(tabular format for microarray gene expression experiments)[282], in

XGAP these data can be on any Trait and/or Subject combination, that

is, we did not create many variants of DataElement to accommodate

each combination of Trait and Subject such as MAGE-TAB’s Expres-

sionDataElement (Probe × Sample), MassSpecDataElement (Mass-

Peak × Sample), eQtlMappingDataElement (Marker × Probe), and

so on. Instead, we store all these data using the generic type DataEle-

ment and limit extension to Trait and Subject only. This avoids the

(combinatorial) explosion of DataElement extensions so researchers can

provide basic data as common data matrices (of DataElements) and can

still add particular annotations flexibly to the matrix row and columns

to allow for (new) biotechnologies as demonstrated in the various Trait

extensions in Figure 2.1. Keeping this simple and uniform data structure

greatly enhances data and software (re)usability and hence productiv-
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A Gene in an Arabidopsis Investigation can be connected to a

DatabaseEntry describing a reference to related information in the

TAIR database[286] and another DatabaseEntry describing a

reference to the MIPS database[252]

Each Individual in a C. elegans Investigation is annotated with an

OntologyTerm to indicate that it was grown in an environment of

either 16◦C or 24◦C

The Arabidopsis Investigation was annotated with the

BibliographicReferences pointing to the paper describing the

investigation and expected results

A Protocol describes the ‘MapTwoPart’ method for QTL mapping

and was annotated with the URI linking to the ‘MetaNetwork

R-package’, which contains this method, and a

BibliographicReference pointing to the paper[111, 250] that

describes the MapTwoPart protocol

A file with a Venn diagram describing the number of masses

detected in each population was added as FileAttachement to the

Arabidopsis metabolite Investigation

Table 2.4: Use cases of annotation data types.
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ity, in line with the findings by Brazma et al.[36] and Rayner et al.[282]

that the simple tabular structures underlying biological data should be

exploited instead of making it overly complicated.

After structural homogenization, such as provided by FuGE and

XGAP, semantic queries are the remaining major barrier for integra-

tion of experimental metadata. This requires ontologies that describe

the properties of the materials and also descriptions of experimental

processes, data and instruments. The former are provided by species-

specific ontologies that are available from various sources. The On-

tology for BioMedical investigation[275] may provide a solution for the

experimental descriptors and is being used in this context by, for ex-

ample, the Immune Epitope Database[260]. To enable researchers to

use these well understood descriptors, XGAP inherits from FuGE the

mechanism of ‘annotations’, a special field to link any data object to

one or more ontology terms. For example, researchers can annotate a

Gene with one or more OntologyTerms if required, referring to standard

ontology terms from OBO[314] or ontology terms defined locally.

2.3 Simple text-file format for data exchange

To enable data exchange using the XGAP model, we produced a simple

text-file format (XGAP-TAB) based on the experience that for data

formats to be used, data files should be easily created using simple Excel

and text editor tools and closely resemble existing practices. This format

is automatically derived from the model by requiring that all annotations

on Investigations, Protocols, Traits, Subjects, and extensions thereof,

are described as delimited text files (one file per data type) with columns

matching the properties described in the object model and each row

describing one data instance. Optionally, sets of DataElements can

also be formatted as separate text matrices with row and column names

matching these in the Trait and Subject annotation files, and with each

matrix value matching one DataElement. The dimensions of each data

48



1

2

3

4

5

6

7

8

2.4. EASY TO CUSTOMIZE SOFTWARE INFRASTRUCTURE

matrix are then listed by a row in the annotations on Data.

Figure 2.2 shows one investigation in the XGAP tabular data format

with one delimited text file per data type - that is, there are files named

‘probe.txt’ and ‘individual.txt’, with each row describing a microarray

probe or individual, respectively - and one text matrix file per set of

DataElements - that is, there are files named ‘data/expressions.txt’

and ‘data/genotypes.txt’. The properties of each data matrix is then

described in ‘data.txt’; that is, for the ‘data/expressions.txt’ there is

a row in ‘data.txt’ that says that its columns refer to ‘individual.txt’,

that its rows refer to ‘probe.txt’ and that its values are ‘decimal’. Raw

data sets and data sets in other formats can be retained in a directory

labeled ‘original’.

After proving its value in several proprietary projects, a growing array

of public data sets are now available at[75] demonstrating the use of

XGAP-TAB[148, 45, 205, 182, 324, 238].

2.4 Easy to customize software infrastruc-

ture

A pilot software infrastructure is available at[96] to help genotype-to-

phenotype researchers to adopt XGAP as a backbone for their data and

tool integration. We chose to use the MOLGENIS toolkit (biosoftware

generator for MOLecular GENetics Information Systems; see Materi-

als and methods) to auto-generate from the XGAP model: 1, an SQL

(Structured Query Language for relational databases) file with all nec-

essary statements for setting up your own, customized variant of the

XGAP database; 2, application programming interfaces (APIs) in R,

Java and Web Services that allow bioinformaticians to plug-in their R

processing scripts, Taverna workflows[311, 375, 157] and other tools;

3, a bespoke web-based graphical user interface (GUI) by which re-

searchers can submit and retrieve data and run plugged-in tools; and

4, import/export wizards to (un)load and validate data sets exchanged
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Figure 2.2: Simple text file format. A whole investigation can be stored by

using easy-to-create tabular text files for annotations or matrix-shaped text

files for raw and processed data. Each ‘annotation’ file relates to one data

type in the object model shown in Figure 2.1 - for example, the rows in the

file ‘probe.txt’ will have the columns named in data type ‘Probe’. Each ‘data’

file contains data elements and has row names and column names referring

to annotation files - for example, ‘genotypes.txt’ may refer to ‘marker.txt’

names as row names and ‘individual.txt’ names as column names. If conve-

nient, constant values can be described in the constant.properties file such as

‘species name’.
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in XGAP-TAB format. The auto-generation process can be repeated

to quickly customize XGAP from an extended model, for example, to

accommodate a particular new type of measurement technology or ex-

perimental design.

2.4.1 Graphical user interface

Figure 2.3 shows the GUI to upload, manage, find and download geno-

type and phenotype data to the database. The GUI is generated with

a uniform ‘look-and-feel’, thereby lowering the barrier for novice users.

Investigations can be described with all subjects, traits, data and proto-

col applications involved (1). (The numbers refer to steps in the figure.)

Data can be entered using either the edit boxes or using menu-option

‘file|upload’ (2). This option enables upload of whole lists of traits

and subjects from a simple tab-delimited format (3), which can easily

be produced with Excel or R; MOLGENIS automatically generates on-

line documentation describing the expected format (4). Subsequently,

the protocol applications involved can be added with the resulting raw

data (for example, genetic fingerprints, expression profiles) and pro-

cessed data (for example, normalized profiles, QTL profiles, metabolic

networks). These data can be uploaded, again using the common tab-

delimited format or custom parsers (5) that bioinformaticians can ‘plug-

in’ for specific file formats (for example, Affymetrix CEL files). The soft-

ware behind the GUI checks the relationships between subjects, traits,

and data elements so no ‘orphaned’ data are loaded into the database

- for example, genetic fingerprint data cannot be added before all in-

formation is uploaded on the markers and subjects involved. Standard

paths through the data upload process are employed to ensure that only

complete and valid data are uploaded and to provide a consistent user

experience.

Biologists can use the graphical user interface to navigate and re-

trieve available data for analysis. They can use the advanced search

options (6) to find certain traits, subjects, or data. Using menu option
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Figure 2.3: Graphical User Interfaces. A user interface enables biologists

to add and retrieve data and run integrated tools. Genotype and pheno-

type information can be explored by investigation, subjects, traits or data.

Hyperlinks following cross-references of the object model point to related in-

formation. Items indicated by 1-9 are described in the main text. See Table

2.5 for uses of this GUI. See also our online demonstrator at[96].
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‘file—download’ (7) they can download visible/selected (8) data as tab-

delimited files to analyze them in third party software. Bioinformati-

cians can ‘plug-in’ a custom-built screen (see ‘customization’ section)

that allows processing of selected data inside the GUI, for example,

visualizing a correlation matrix as a graph (9) without the additional

steps of downloading data and uploading it into another tool. Biologists

can create link-outs to related information, for example, to probes in

GeneNetwork.org (not shown). Table 2.5 summarizes use cases of the

graphical user interface.

2.4.2 Application programming interfaces

De facto standard analysis tools are emerging, for example, tools for

transcript data[48, 8, 38] or metabolite abundance data[111] to mention

just a few. These tools are typically implemented using the open source

software for statistical analysis and graphics named R[158]. Bioin-

formaticians can connect their particular R or Java programs to the

XGAP database using an API with similar functionality to the GUI,

that is, using simple commands like ‘find’, ‘add’ and ‘update’ (R/API,

Java/API). Scripts in other programming languages and workflow tools

like Taverna[157] can use web services (SOAP/API) or a simple hyperlink-

based interface (HTTP/API), for example, http://my-xgap/api

/find/Data?investigation=1 returns all data in investigation

‘1’. On top of this, conversion tools have been added to the R interface

to read and write XGAP data to the widely used R/qtl package[38].

Figure 2.4 demonstrates how researchers can use the R/API to

download (or upload) all trait/subject/data involved in their investiga-

tion from (or to) their XGAP database for (after) analysis in R. When

XGAP is customized with additional data type variants, the APIs are

automatically extended in the XGAP database instances by re-running

the MOLGENIS generator, thus also allowing interaction with new data

types in a uniform way. These new types can then be used as standard

parameters for new analysis software written in R and Java. Table 2.6
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Navigate all Investigations, and for each Investigation, see the

Assays and available Data

Select a Gene and find all Investigations in which this Gene is

regulated as suggested by significant eQTL Data (P-value < 0.001)

For a given Locus, select all Genes that have QTL Data mapping

‘in trans’; and this may be regulated by this Locus, for example,

absolute(QTL locus - gene locus) > 10 Mb and QTL P-value <

0.001

Download a selection of raw gene expression Data as a

tab-delimited file (to import into other software)

Upload Investigation information from tab-delimited files

Upload Affymetrix Assays using custom *.CEL/*.CDF file readers

Plot highly correlated metabolic network Data in a network

visualization graph

Define security levels for Assays/Investigations to ensure that

appropriate data can be viewed only by collaborators, and not by

other people

A MassPeak has been identified to be ‘proline’ and we can follow

the link-out URI to Pubchem[275], because it was annotated to

have ‘cid’ 614, to find information on structure, activity, toxicology,

and more

Table 2.5: Use cases of the graphical user interface for biologists.
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In R, parse a set of tab-delimited Marker, Genotype and Trait files

and load them into the database (R/API)

In R, retrieve all Trait, Markers, expression Data, and genotype

Data from an investigation as data matrices, before QTL mapping

with MetaNetwork (R/API)

In Java, retrieve a list of QTL profile correlation Data to show

them as a regulatory network graph (J/API)

In Java, customize generated file readers to load specific file

formats (J/API)

In Taverna, retrieve Genes from XGAP to find pathway information

in KEGG (WS/API)

In Python, retrieve a list of QTL mapping Data using a hyperlink

to XGAP (HTTP/API)

KEGG: Kyoto Encyclopedia of Genes and Genomes.

Table 2.6: Use cases of the application programming interface for bioinfor-

maticians

summarizes use of the application programming interface.

2.4.3 Import/export wizards

A generated import tool takes care of checking the consistency of all

traits, subjects and data that are provided in XGAP-TAB text files

and loads them into the database. The entries in all files should be

correctly linked, the data must be imported in the right order and the

names and IDs need to be resolved between all the annotation files

to check and link genes, microarray probes and gene expression to the
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Figure 2.4: Application programming interfaces. APIs enable bioinformati-

cians to integrate data and tools with XGAP using web services, R-project

language, Java, or simple HTTP hyperlinks. The figure shows how scientists

can use the R/API to upload raw investigation data (Scientist A) so another

researcher can download these data and immediately use it for the calculation

of QTL profiles and upload the results thereof back to the XGAP database for

use by another collaborator (Scientist B). Note how ‘add.datamatrix’ enables

flexible upload of matrices for any Subject or Trait combination; this function

adds one row to Data for each matrix, and as many rows to DataElement as

the matrix has cells. See Table 2.6 for uses of these APIs.
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data. The import program takes care of all these issues (conversion,

relationship checks, dependency ordering, and so on). Moreover, the

import program supports ‘transactions’, which ensures that all data

inserts are rolled back if an import fails halfway, preventing incomplete

or incorrect investigation data to be stored in the database. In a similar

way, an export wizard is provided to download investigation data as a

zipped directory of XGAP-TAB files.

When XGAP is customized with additional data type variants, the

import/export program is automatically extended by the MOLGENIS

generator, ‘future-proofing’ the data format for new biotechnological

profiling platforms. Moreover, the auto-generated import program can

also be used as a template for parsers of proprietary data formats, such

as implemented in parsers for the PED/MAP, HapMap, and GeneNet-

work data. Collaborations are underway within EBI and GEN2PHEN to

also enable import/export of MAGE-TAB[282] files, the standard format

for microarray experiments, of PAGE-OM[263] files, a specialized for-

mat for genome-variation oriented genotype-to-phenotype experiments,

and of ISA-TAB[65] files, a generalized evolution of MAGE-TAB to rep-

resent all experimental metadata on any investigation, study and assay

designed to be FuGE compatible. Also, convertors to ease retrieval and

submission to public repositories like dbGaP are under development. It

is envisaged that integration of all these formats will enable integrated

analysis of experimental data from, for example, mouse and human ex-

periments using various biotechnology platforms, which was previously

near impossible for biological labs to implement.

2.4.4 Customizing XGAP

Customizations and extensions of the XGAP object model can be de-

scribed in a single text file using MOLGENIS[329, 327] DSL. On the

push of a button, the MOLGENIS generator instantly produces an ex-

tended version of the XGAP database software from this DSL file. A

regression test procedure assists XGAP developers to ensure their ex-
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tensions do not break the XGAP exchange format. Figure 2.5a shows

how the addition of a Metabolite data entity as a new variant of Trait

takes only a few lines in this DSL. Figure 2.5b shows how the GUI can

be customized to suit a particular experimental process. Figure 2.5c

shows how programmers can add a ‘plug-in’ program that is not gener-

ated by MOLGENIS but written by hand in Java (for example, a viewer

that plots QTL profiles interactively). Moreover, use of Cascading Style

Sheets (CSS) enables research projects to completely customize the look

and feel of their XGAP.

All XGAP and MOLGENIS software can be downloaded for free

under the terms of the open source license LGPL. Extended documen-

tation on XGAP and MOLGENIS customization is available online at

the XGAP and MOLGENIS wikis[96, 103].

2.5 Conclusions

In this paper we report a minimal and extensible data infrastructure for

the management and exchange of genotype-to-phenotype experiments,

including an object model for genotype and phenotype data (XGAP-

OM), a simple file format to exchange data using this model (XGAP-

TAB) and easy-to-customize database software (XGAP-DB) that will

help groups to directly use and adapt XGAP as a platform for their

particular experimental data and analysis protocols.

We successfully evaluated the XGAP model and software in a broad

range of experiments: array data (gene expression, including tiling arrays

for detection of alternative splicing, ChIP-on-chip for methylation, and

genotyping arrays for SNP detection); proteomics and metabolomics

data (liquid chromatography time of flight mass spectrometry (LC-

QTOF MS), NMR); classical phenotype assays[148, 45, 205, 183, 324,

238, 21, 25]; other assays for detection of genetic markers; and an-

notation information for panel, gene, sample and clone. Nontechnical

partners successfully evaluated the practical utility by independently
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Figure 2.5: Customizing XGAP. A file in MOLGENIS domain-specific lan-

guage is used to describe and customize the XGAP database infrastructure

in a few lines. (a) Shows how the addition of a Metabolite data entity as

a new variant of Trait takes only a few lines in this DSL. (b) Shows how

the GUI can be customized to suit a particular experimental process. (c)

Shows how programmers can add a ‘plug-in’ program that is not generated

by MOLGENIS but written by hand in Java.
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formatting and loading parts of their consortium data: EU-CASIMIR

(for mouse; Table 2.7), EU-GEN2PHEN (for human; Table 2.7), EU-

PANACEA (for C. elegans) and IOP-Brassica (for plants). A public

subset of these data sets is available for download at[96]. When needed

we could quickly add customizations to the model, building on the gen-

eral schema, and then use MOLGENIS to generate a new version of

the software at the push of a button, for example, to support NMR

methods as an extended type of Trait[110]. Furthermore we success-

fully integrated processing tools, such as a two-way communication

with R/QTL[38] enabling QTL mapping on XGAP stored genotypes

and phenotypes with QTL results stored back into XGAP.

Based on these experiences, we expect use of XGAP to help the

community of genome-to-phenome researchers to share data and tools,

notwithstanding large variations in their research aims. The XGAP data

format can be used to represent and exchange all raw, intermediate and

result data associated with an investigation, and an XGAP database,

for instance, can be used as a platform to share both data and compu-

tational protocols (for example, written in the R statistical language)

associated with a research publication in an open format. We envision

a directory service to which XGAP users can publish metadata on their

investigations either manually or automatically by configuring this op-

tion in the XGAP administration user interface. This directory service

can then be used as an entry point for federated querying between the

community of XGAPs to share data and tools.

Groups that already have an infrastructure can assimilate XGAP to

ease evolution of their existing software. Next to their existing user

tools, they can ‘rewire’ algorithms and visual tools to also use the

MOLGENIS APIs as data backend. Thus, researchers still have the

same features as before, plus the features provided by the generated

infrastructure (for example, data management GUIs, R/API) and con-

nected tools (for example, R packages developed elsewhere). Moreover,

much less software code needs to be maintained by hand when replacing

hand-written parts by MOLGENIS-generated parts, allowing software
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Consortium Remit

CASIMIR The collection and distribution of large volumes of com-
plex data typical of functional genomics is carried out by
an increasing number of disseminated databases of hugely
variable scale and scope. Combined analysis of highly dis-
tributed datasets provides much of the power of the ap-
proach of functional genomics, but depends on databases’
ability to exchange data with each other and on analytical
tools with semantic and structural integrity. Agreement
on the standards adopted by databases will inevitably be a
matter of community consensus and to that end a recent
coordination action funded by the European Commission,
CASIMIR[64], is engaged in a community consultation on
the nature of the technical and semantic standards needed.
What has already become clear in use-case studies con-
ducted so far is that whatever standards are adopted, they
will inevitably remain dynamic and continue to develop,
particularly as new data types are collected. Crucially, they
should allow the open-ended development of analytical and
datamining software, while integration of efforts to agree
such standards and develop new software is essential.

GEN2PHEN Currently available genotype-to-phenotype (G2P)
databases are few and far between, have great di-
versity of design, and limited or no interoperability
between them. This arrangement provides no convenient
way to populate the databases, no easy way to exchange,
compare or integrate their content, and absolutely no way
to search the totality of gathered information. In this
context, the European Commission has recently funded
the GEN2PHEN project[65], which intends to significantly
improve the database infrastructure available within
Europe for the collation, storage, and analysis of human
and model-organism G2P data. This will be achieved by
first developing various cutting-edge solutions, and then
deploying these in conjunction with proven concepts, so
as to transform the current elementary G2P database
reality into a powerful networked hierarchy of interlinked
databases, tools and standards.

Table 2.7: XGAP participating consortia. 61
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engineers to add new features for researchers much more rapidly.

We invite the broader community to join our efforts at the pub-

lic XGAP.org wiki, mailing list and source code versioning system to

evolve and share the best XGAP customizations and GUI/API ‘plug-in’

enhancements, to support the growing range of profiling technologies,

create data pipelines between repositories, and to push developments

in the directions that will most benefit research.

2.6 Materials and methods

Software modeling, auto-generation/configuration and component tool-

boxes are increasingly used in bioinformatics to speed up (bespoke) bi-

ological software development; see our recent review[329]. For XGAP

we required a software toolbox providing query interfaces, data man-

agement interfaces, programming interfaces to R and web services, sim-

ple data exchange formats and a minimal requirement of programming

knowledge. The MOLGENIS modeling language and software generator

toolbox[329, 103] was chosen as it combines all these features.

Several alternative toolboxes were evaluated: BioMart[103, 312] and

InterMine[214] generate powerful query interfaces for existing data but

are not suited for data management; Omixed[246] generates program-

matic interfaces onto databases, including a security layer, but lacks

user interfaces; PEDRO/Pierre[166] generates data entry and retrieval

user interfaces but lacks programmatic interfaces; and general genera-

tors such as AndroMDA[12] and Ruby-on-Rails[247] require much more

programming/configuration efforts compared to tools specific to the bi-

ological domain. Turnkey[250] seemed to be closest to our needs: it

emerged from the GMOD community having GUI and SOAP interfaces

but lacks auto-generation of R interfaces and a file exchange format.

Figure 2.6 summarizes how MOLGENIS generates the XGAP data-

base software in three layers: database, API and GUI. MOLGENIS either

generates a high-performance ‘server’ edition, which requires installa-
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tion on server software, or a limited ‘standalone’ edition that runs on a

desktop computer without any additional configuration. The database

layer is generated as SQL files with ‘database CREATE statements’

that are loaded into either MySQL (server), PostgreSQL (server) or

HSQLDB (standalone). Each data type in the XGAP object model

(Figure 2.1) is mapped to its own table - for example, there is a ‘Trait’

table. Each inheritance adds another table, for example, each Gene

has an entry in the ‘Gene’ table and also in the ‘Trait’ table. One-to-

many crossreferences between data types are mapped as foreign keys -

for example, Data has a numeric field called ‘Investigation’ that must

refer to the foreign key ‘molgenisid’ of Investigation. Many-to-many

cross-references are mapped via a ‘link-table’ - for example, an ad-

ditional table ‘mref import data’ is generated for two foreign keys to

Data and ProtocolApplication, respectively, to model the importData

relationship between them. The API layer is generated as Java files

either served via Tomcat (server) or Jetty (standalone). A Java class

is generated for each data type - for example, there is a class Gene.

All data can be queried programmatically via a central Database class,

that is, command db.find(Gene.class) returns all Gene objects in the

database. To enhance performance, the API uses the ‘batched’ up-

date methods of Java’s DataBase Connectivity (JDBC) package and

the ‘multi-row-syntax’ of MySQL to allow inserts of 10,000s of data en-

tries in a single command, an optimization that is 5 to 15 times quicker

than standard one-by-one updates. The Java/API is exposed with a

SOAP/API, HTTP/API and R/API, so XGAP can also be accessed via

web service tools like Taverna, HTTP or R, respectively (accessible via

hyperlinks in the GUI). The GUI layer is also generated as Java files.

The GUI includes classes for each Menu and Form - for example, the

InvestigationForm class generates a view- and editform for investiga-

tions in the GUI. The generation is steered from one XML file written

in MOLGENIS DSL (partially shown in Figure 2.5). To enable FuGE

extension, the FuGE model was automatically translated into MOLGE-

NIS DSL. We therefore first downloaded the FuGE v1 MagicDraw file
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from[235], exported from MagicDraw to XMI 2.1, parsed the XMI using

the EMF parser from Eclipse[267] and then automatically translated it

into MOLGENIS DSL using a newly built XmiToMolgenis tool. Com-

patibility with the FuGE standard is ensured via inheritance; that is,

Investigation, Protocol, ProtocolApplication, Data and DimensionEle-

ment in XGAP all extend FuGE data types of the same name. Further

implementation details can be found at [96, 103].

Abbreviations
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and phenotypes; DSL: domain-specific computer language; FuGE: Func-
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Figure 2.6: Auto-generation of XGAP software. Open source generator

tools are used to produce a customized XGAP software infrastructure. 1,

The XGAP object model is described using the MOLGENIS’ little modeling

language (Figure 2.4). 2, Central software termed MolgenisGenerate runs

several generators, building on the MOLGENIS catalogue of reusable assets.

3, At the push of the button, the software code for a working XGAP im-

plementation is automatically generated from the DSL file. GUI and APIs

provide simple tools to add and retrieve data, while the reusable assets of

MOLGENIS hide the complexity normally needed to implement such tools.

For customization, only simple changes to the XGAP model file are required;

the MOLGENIS generator takes care of rewriting all the necessary files of

SQL and Java software code, saving time and ensuring a consistent quality.
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Abstract

Summary: xQTL workbench is a scalable web platform for the map-

ping of quantitative trait loci (QTLs) at multiple levels: for example

gene expression (eQTL), protein abundance (pQTL), metabolite abun-

dance (mQTL) and phenotype (phQTL) data. Popular QTL mapping

methods for model organism and human populations are accessible via

the web user interface. Large calculations scale easily on to multi-core

computers, clusters and Cloud. All data involved can be uploaded and
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3.1. INTRODUCTION

queried online: markers, genotypes, microarrays, NGS, LC-MS, GC-MS,

NMR, etc. When new data types come available, xQTL workbench is

quickly customized using the Molgenis software generator.

Availability: xQTL workbench runs on all common platforms, including

Linux, Mac OS X and Windows. An online demo system, installation

guide, tutorials, software and source code are available under the LGPL3

license from http://www.molgenis.org/xqtl1.

Contact: m.a.swertz@rug.nl

3.1 Introduction

Modern high-throughput technologies generate large amounts of ge-

nomic, transcriptomic, proteomic and metabolomic data. However, ex-

isting open source web-based tools for QTL analysis, such as webQTL

[358] and QTLNetwork [377], are not easily extendable to different set-

tings and computationally scalable for whole genome analyses. xQTL

workbench makes it easy to analyse large and complex datasets using

state-of-the-art QTL mapping tools and to apply these methods to mil-

lions of phenotypes using parallelized ‘Big Data’ solutions [342]. xQTL

workbench also supports storing of raw, intermediate and final result

data, and analysis protocols and history for reproducibility and data

provenance. Use of Molgenis [328] helps to customize the software. All

is conveniently accessible via standard Internet browsers on Windows,

Linux or Mac (and using Java, R for the server).

3.2 Features

xQTL workbench provides visualization of QTL profiles, single and mul-

tiple QTL mapping methods, easy addition of new QTL analyses, scal-

able data management and analysis tracking.

1The URL in the original paper is no longer active and was updated here.
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3.2.1 Explore QTL profiles

Through the web interface, users can explore mapped QTLs, and under-

lying information by viewing QTL plots in an interactive scrollable and

zoomable window. xQTL workbench has support for other common im-

age formats, such as PNG, JPG, SVG and embedded postscript; useful

for publishing scientific results online, and on paper. From the output,

main database identifiers, such as gene, protein and/or metabolite iden-

tifiers are automatically linked-out to matching external web pages of

public database such as NCBI, KEGG and Wormbase.

3.2.2 Single and multiple QTL mapping

xQTL workbench wraps R/qtl [15, 38] in a web-based analysis frame-

work offering all important QTL mapping routines, such as the EM algo-

rithm, imputation, Haley-Knott regression, the extended Haley-Knott

method, marker regression and Multiple QTL mapping. In addition,

xQTL workbench includes R/qtlbim, a library that provides a Bayesian

model selection approach for mapping multiple interacting QTL [376]

and Plink, a library for association QTL mapping on single nucleotide

polymorphisms (SNP) in natural populations [277].

3.2.3 Add new analysis tools

xQTL workbench supports flexible adding of more QTL analysis soft-

ware: any R-based, or command-line tool, can be plugged in. All anal-

ysis results are uploaded, stored and tracked in the xQTL workbench

database through an R-API. When new tools are added, they can build

on the high-level multi-core computer, cluster and Cloud management

functions, based on TORQUE/OpenPBS and BioNode [273]. xQTL

workbench can be made part of a larger analysis pipeline using inter-

faces to R, Excel, REST and SOAP web services and Galaxy [128].
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Figure 3.1: Screenshot of xQTL workbench with all features enabled; (1)

import phenotype, genotype and genetic map data, examples are given per

import type; (2) search through the whole database, explore and browse

your data using molgenis generated web-interfaces; (3) run R/qtl QTL map-

ping, the general plugin allows users to perform not only QTL mapping but

also other analyze; (4) use default (or custom) plugins to explore results

(e.g. Heatmaps, QTL profiles); (5) add new tools to the workbench (for

Bio informaticians); (6) user management and access control of the system

(Only for admins); (7) expert settings can be altered in the admin tab (Only

for admins); (8) connect/share data using generated API’s to R statistics,

REST/JSON, SOAP. 71
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3.2.4 Track analysis and monitor performance

When a new analysis protocol or R script is defined, this protocol can

easily be applied to new data. Also, xQTL workbench keeps track of his-

tory. Re-use of analysis protocols can be done in an automated fashion.

Previous analyses can be rerun without resetting parameters. xQTL

workbench provides an online overview of past analyses e.g. which

analyses were performed, by who, when and display settings applied.

3.2.5 Scalable data management

xQTL workbench has a consistency checking database based on XGAP

specification [330], user interfaces to manage and query genotype and

phenotype datasets and support for various database back-ends includ-

ing HSQL (standalone) and MySQL. Phenotype, genotype and genetic

map data can be imported as text (TXT), comma separated (CSV)

and Excel files. xQTL workbench handles and stores large data in a

new and efficient binary edition of the XGAP format, named XGAPbin

(extension .xbin), documented online. Such binary formats are essential

when handling, storing and transporting multi-Gigabyte datasets.

3.2.6 Customizable to research needs

Additional modules for new data modalities can be added using Mol-

genis software generator [330]. The ‘look and feel’ of xQTL work-

bench is adaptable to institute or consortium style by changing a simple

template, which is described in the xQTL workbench documentation

enabling seamless integration into an existing website or intranet site,

such as recently for EU-PANACEA model organism project and Life-

Lines biobank.
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3.3 Implementation

We built xQTL workbench on top of Molgenis [327], a Java-based

software to generate tailored research infrastructure on-demand [329].

From a single ‘blueprint’ describing the whole system, Molgenis auto-

generates a full application including user interface, database infras-

tructure, application programming interfaces in R, REST and SOAP

(APIs). Molgenis’ flexibility and robustness is proven by the wide range

of research projects, e.g. the Nordic GWAS Control database [198], EB

mutation database [343] and the Animal observation database [328].

For data storage, the eXtensible Genotype and Phenotype (XGAP)

data model was adopted [330] and extended for big data. To support

the increased demand for computational resources for included mapping

routines, we added high-level cluster and cloud management functions

for computation. The scalable QTL mapping routines of xQTL work-

bench are written in R and C. The choice of R ties in with the general

practice of using R for QTL mapping. The user interface includes di-

rect access to the R interpreter. Both xQTL workbench and Molgenis

are open-source software, and source code is transparently stored and

tracked in online source control repositories.

3.4 Conclusion

xQTL workbench provides a total solution for web-based analysis: ma-

jor QTL mapping routines are integrated for use by experienced and

inexperienced users. Researchers can upload raw data, run analyses,

explore mapped QTL and underlying information, and link-out to im-

portant databases. New algorithms can be flexibly added, immediately

available to all users. Large analyses can be easily executed on a cluster

or in the Cloud. Future work include visualizations and search options

to explore the results. We also had an EU-SYSGENET workshop that

envisioned further integration of xQTL with analysis tools like HAPPY,

databases like GeneNetwork, and the workflow manager TIQS [86].

73



1

2

3

4

5

6

7

8

CHAPTER 3. A WEB ENVIRONMENT FOR QTL ANALYSIS

Acknowledgements

We thank Konrad Zych for Figure 3.1.

Funding : National Institutes of Health (GM074244 to KB); Nether-

lands Organisation for Scientific Research (NWO)/TTI Green Genetics

(1CC029RP to P.P.); NWO (Rubicon 825.09.008 to M.A.S), Centre

for BioSystems Genomics (CBSG), Netherlands Consortium of Systems

Biology (NCSB) (to D.A.), Netherlands Bioinformatics Center (NBIC)

(to M.A.S.), all part of Netherlands Genomics Initiative/NWO; Tar-

get/LifeLines co-funded by the European Regional Development Fund

and NWO (to M.A.S.); and EU-FP7 Projects PANACEA (222936 to

K.J.v.d.v.) and EURATRANS (241504 to R.C.J.).

Conflict of Interest: none declared.

74



1

2

3

4

5

6

7

8

Chapter 4

WormQTLHD: A web

database for linking

human disease to natural

variation data in

C. elegans

Nucleic Acids Res. 2014 Jan;42(Database issue):D794-801.

DOI: 10.1093/nar/gkt1044

PubMed ID: 24217915

75

https://doi.org/10.1093/nar/gkt1044
https://www.ncbi.nlm.nih.gov/pubmed/24217915


1

2

3

4

5

6

7

8

CHAPTER 4. LINKING HUMAN DISEASE TO C. ELEGANS

K. Joeri van der Velde1,2,3, Mark de Haan1,2,3,4, Konrad Zych2, Danny

Arends2, L. Basten Snoek5, Jan E. Kammenga5, Ritsert C. Jansen2,

Morris A. Swertz1,2,3,* and Yang Li2,3,*

1. Genomics Coordination Center, University of Groningen, University

Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, The

Netherlands.

2. Groningen Bioinformatics Center, University of Groningen, P.O. Box

11103, 9700 CC Groningen, The Netherlands.

3. Department of Genetics, University of Groningen, University Medical

Center Groningen, P.O. Box 30001, 9700 RB Groningen, The Nether-

lands.

4. Department of Bioinformatics, Hanze University of Applied Sciences,

Groningen, Zernikeplein 11, 9747 AS, The Netherlands.

5. Laboratory of Nematology, Wageningen University, 6708 PB Wa-

geningen, The Netherlands.

Received August 14, 2013; Revised October 9, 2013; Accepted October

10, 2013

*To whom correspondence should be addressed. Tel: +31 50 367100;

Fax: +31 50 361 7230; Email: m.a.swertz@rug.nl

Correspondence may also be addressed to Yang Li. Tel: +31 50 367100;

Fax: +31 50 361 7230; Email: yang.li@rug.nl

The authors wish it to be known that, in their opinion, the first two

authors should be regarded as Joint First Authors.

Abstract

Interactions between proteins are highly conserved across species. As

a result, the molecular basis of multiple diseases affecting humans can
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4.1. INTRODUCTION

be studied in model organisms that offer many alternative experimen-

tal opportunities. One such organism —Caenorhabditis elegans— has

been used to produce much molecular quantitative genetics and sys-

tems biology data over the past decade. We present WormQTLHD

(Human Disease), a database that quantitatively and systematically

links expression Quantitative Trait Loci (eQTL) findings in C. elegans

to gene-disease associations in man. WormQTLHD, available online

at http://www.wormqtl-hd.org, is a user-friendly set of tools

to reveal functionally coherent, evolutionary conserved gene networks.

These can be used to predict novel gene-to-gene associations and the

functions of genes underlying the disease of interest. We created a

new database that links C. elegans eQTL data sets to human diseases

(34,337 gene-disease associations from OMIM, DGA, GWAS Central

and NHGRI GWAS Catalogue) based on overlapping sets of ortholo-

gous genes associated to phenotypes in these two species. We utilized

QTL results, high-throughput molecular phenotypes, classical pheno-

types and genotype data covering different developmental stages and

environments from WormQTL database. All software is available as

open source, built on MOLGENIS and xQTL workbench.

4.1 Introduction

Many exciting data sets have been collected in recent years for Caenor-

habditis elegans, a free-living, non-parasitic soil-related nematode that

feeds on the bacteria of decaying organic matter. This worm has many

useful features that have made it one of the most studied model organ-

isms: it is small and easy to house, has a short generation time and is

transparent. As a consequence, its genomic information is now available

[91], and the developmental path and function of almost every cell in its

body has been described [122]. In addition, recent genetical genomics

studies in C. elegans have revealed thousands of genomic regions (loci)

that are associated to the quantitative variation in a diverse range of
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phenotypes, such as gene expression [expression Quantitative Trait Loci

(eQTLs)] [114, 178, 254, 203, 350, 351, 293], lifespan [83], develop-

ment [139, 140, 177], stress resistance [295, 147], behaviour [227, 283],

dauer formation [147, 133] and sensitivity to RNAi treatments [92].

Genes having eQTLs mapping to the same genomic region (i.e.

hotspot) are possibly involved in the same biological pathway/process.

Palopoli et al. [254] have shown that biochemical processes and molec-

ular functions of genes are generally highly conserved. Lee et al. [194]

have shown that using the OMIM database [142] (http://omim.

org/) and orthologue mapping data from INPARANOID [248], it is

possible to infer new gene-gene interactions that are responsible for a

certain disease in man from model organism data. McGary et al. [226]

have shown that the conservation level between C. elegans and man

is sufficient to infer gene-gene interactions in man from worm data.

Even though the global disease phenotypes may not be at all compa-

rable, the molecular basis may be common (e.g. breast cancer and

high male incidence of progeny). For example, research on stress re-

sponse in C. elegans has provided detailed insight into the genetic and

molecular mechanisms underlying complex human diseases [294]. In ad-

dition, Shaye and Greenwald [307] have generated a compendium of C.

elegans genes with human orthologues using four orthology prediction

programmes for identifying C. elegans orthologues of human disease

genes for potential functional analysis. As a result, linking C. elegans

and human data could help to understand the mechanisms underlying

many human diseases.

To facilitate the exploitation of the worm eQTL data for human

disease research we developed a new database, WormQTLHD, which

quantitatively and systematically links many eQTLs findings in C. el-

egans to gene-disease associations in human. The database is based

on the detection of the overlapping sets of orthologous genes associ-

ated with different phenotypes, or ‘phenologs’ [226] between these two

species. The data, mainly eQTL results, were taken from different plat-

forms (e.g. Agilent) and experiments (e.g. developmental stages). We
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provide a set of web-based analysis tools to search the database and

explore phenotypes based on gene orthologues between worm and man.

The result can be downloaded and visualized in a comprehensive yet

clear way. All data and tools can be accessed via a public web user in-

terface, as well as basic programming interfaces, which were built using

the MOLGENIS biosoftware toolkit [328].

To our knowledge, this is the first online database for the system-

atic investigation of C. elegans phenotype equivalents of human dis-

eases by integrating known disease-gene associations, gene orthologue

data, molecular phenotypes and QTL results. WormQTLHD allows re-

searchers to explore these complex data in a user-friendly way, finding

new genes, interactions and loci for human disease models.

WormQTLHD is freely accessible without registration and is hosted

at http://www.wormqtl-hd.org. All underlying software is open

source and can be downloaded and freely used, for example, as a lo-

cal mirror of the database and/or to host new studies, which can be

uploaded using XGAP format [330]. Below we describe the results,

methods used to implement the system and future plans.

4.2 Implementation

WormQTLHD was compiled using data from six sources that are de-

scribed below: (I) WormQTL [315]1, (II) WormBase Phenotypes ([379],

(III) Online Mendelian Inheritance in Man (OMIM) [142], (IV) The Dis-

ease and Gene Annotations (DGA) [259], (V) NHGRI GWAS Catalogue

[152] (http://www.genome.gov/gwastudies) and (VI) GWAS

Central [339, 39] (Figure 4.1). (I) WormQTL (http://www.worm

qtl.org) contains many published ‘genetical genomics’ experiments

and consists of 47 public data sets with eQTL data on 500 panels (Re-

combinant Inbred Lines or natural strains), 68,452 microarray probes,

1,630 samples and 1,579 markers. The tools that were present in Wor-

1The original paper erroneously cited [294, 352] here.
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Figure 4.1: Human and worm data integration. WormQTLHD was com-

piled using data derived from WormQTL, WormBase, OMIM, DGA, GWAS

Catalogue and GWAS Central.
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mQTL, such as the QTL Finder and the Genome Browser, are also

available in WormQTLHD. (II) WormBase is ‘an international consor-

tium of biologists and computer scientists dedicated to providing the

research community with accurate, current, accessible information con-

cerning the genetics, genomics and biology of C. elegans and related

nematodes’ (WormBase Mission statement, Todd Harris, 26 Novem-

ber 2012). From WormBase, we downloaded all the gene-phenotype

associations (total 227,216) via WormMart. (III) OMIM is one of the

most popular databases containing 14,164 human gene-disease associa-

tions. (IV) The DGA database (2,961 associations) was started in 2013

and claims to be more comprehensive than OMIM. (V) The NHGRI

GWAS Catalogue is a collection of 12,925 SNP-to-disease associations

published in GWAS studies with at least 100,000 assayed SNPs and a

P-value of <1.0 x 10-5. The SNPs were linked to human genes by

the authors of the original papers that have been included in the cata-

logue. (VI) GWAS Central [339, 39, 108] is a database of summary level

findings from genetic association studies. The authors of GWAS Cen-

tral gathered and curated many datasets from public domain projects,

and supplied us with a list of 4,487 gene-disease associations having

a P-value of <1.0 x 10-10. Because of the non-overlapping informa-

tion in these four sources of human genes linked to disease, they are

all provided and can be selected by the user. Human and worm data

are connected based on the detection of orthologous genes in these two

species. We downloaded all INPARANOID orthologues between C. el-

egans and Homo sapiens with a 100% bootstrap value. The bootstrap

value indicates how often the pair is found as reciprocally best matched

in a sampling with a replacement procedure that was applied to the

original Blast alignment.

To explore this database, WormQTLHD features four major search-

ing tools for different purposes. The starting points are summarized in

Figure 4.2 and described in detail below, followed by a short summary

of the software used.
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Figure 4.2: Cross-experiment search. WormQTLHD provides four tools to ex-

plore the database: mapping human diseases to worm QTLs (Disease2QTL);

mapping a worm genomic region to human diseases (Region2disease); map-

ping worm QTLs to human diseases (QTL2disease); and linking worm phe-

notypes to human diseases (ComparePheno).
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4.2.1 Tool 1: ‘Disease2QTL’, mapping human dis-
eases to worm eQTLs

Exploring the genetic variation data for human gene orthologues in worm

can provide useful insight into the function and regulation of human dis-

eases. WormQTLHD provides a tool for human geneticists to explore

novel causal genes for a specific human disease by using worm QTL

findings. Using a selection of one or multiple human diseases (from

OMIM, DGA, NHGRI GWAS Catalogue or GWAS Central), a ‘shop-

ping’ page is presented with worm gene expression probes and their

human disease association. More information about the gene orthol-

ogy mapping and association studies can be browsed. Users can put

individual probes, or all probes at once, into the ‘shopping cart’. Subse-

quently, they can explore the genetic variation of those genes across the

different experiments and studies that are stored in the WormQTLHD

database. The shopping cart is a central place in WormQTLHD where

users can see the various worm gene probes that they have selected,

and create QTL/eQTL visualizations from the items in the shopping

cart using ‘Plot QTLs’.

Using the ‘Plot QTLs’ function, researchers can test if genes asso-

ciated with the selected diseases have any QTLs and if they map to a

common genomic region. Shared QTLs suggest that those genes are

regulated by the same genetic variation and are possibly involved in

the same biological pathways. The genes with cis-QTLs in that ge-

nomic region are used as candidate genes in several types of studies

[182, 336, 316]. The same approach can be used for causal genes of

human diseases. Alternatively, users can also select worm phenotypes

(1,504 total) instead of human diseases as a starting point. The shop-

ping window is presented in exactly the same way as before, so users can

browse human diseases from a worm phenotype perspective instead, or

simply shop for probes of choice for a given worm phenotype and plot

their QTLs, without considering any human disease relation.
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4.2.2 Tool 2: ‘Region2disease’, mapping worm ge-
nomic regions to human diseases

Researchers can link worm genomic regions to human diseases. This

approach starts by selecting a region in the worm genome, e.g. a known

‘eQTL hotspot’, where a number of eQTLs are located. The region is

selected by providing the chromosome name, start and end base pair

positions. Users can quickly define a region of interest by using the

location of any C. elegans gene. The database then returns all worm

gene expression probes that are annotated in this region. From the

probes, the corresponding worm genes are gathered, plus their human

orthologues. The user is presented with a table containing the human-

worm orthology and disease/phenotype associations in man and worm.

After shopping for some or all of the relevant probes, users can choose

to visualize eQTL results for them (similar to Tool 1), or perform a

disease enrichment test.

The hypergeometric gene overlap test [291] to discover phenologs

(phenotype orthologues) can be performed by clicking on ‘Disease en-

richment’. All probes in the region are linked to their corresponding

genes in worm, and a test is performed whether this entire group of

genes is significantly ‘enriched’ for one or more human diseases by over-

lapping orthologous groups and worm and human genes. The statistical

significance of phenologs (P-value) is listed in an output table. A signif-

icant result means that the input genomic region shares a significantly

larger set of orthologous genes with a human disease than would be

expected at random, even if the expressed phenotype in worm appears

very different from the human disease phenotype (e.g. breast cancer

and fertility). This tool can provide novel interpretation of genomic

regions of interest.
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4.2.3 Tool 3: ‘QTL2disease’, mapping worm QTLs
to human diseases

Researchers can start by selecting a QTL/eQTL in worm to find poten-

tial relationships with human diseases. We can select QTLs of interest

based on three criteria: a selected experiment, a certain threshold for

significance (LOD score) and a specific gene expression probe with a

suspected QTL. If there is a QTL with a LOD score above the thresh-

old, we automatically select the closest 50 probes on both sides of

the highest peak marker. These probes are presented and available for

browsing, shopping and plotting of QTLs, or can be the input for the

disease enrichment test to find phenologs.

4.2.4 Tool 4: ‘ComparePheno’, linking worm pheno-
types to human diseases

WormQTLHD also provides a tool that links human diseases to classical

worm phenotypes (and vice versa) to discover phenologs in a system-

atic way. Users begin by selecting one or more human diseases and

clicking on ‘Compare’. The genes associated with the selected disease

are tested for enrichment against all sets of known associated genes for

worm phenotypes. The result reveals functionally coherent, evolution-

arily conserved gene networks.

Alternatively, users can also start by selecting worm phenotypes,

which are tested against human diseases. In addition to cross-species

testing, results of within-species disease enrichment are also available

(e.g. to find the closest related human disease for another input human

disease).

4.2.5 Software used

All the software has been implemented using the open source ‘MOLec-

ular GENetics Information Systems’— MOLGENIS—toolkit [328]. The
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MOLGENIS toolkit is Java-based software to generate tailored research

infrastructure on-demand [329]. In particular, we built on an exist-

ing MOLGENIS application, the extensible xQTL workbench [14] and

the R/qtl QTL mapping and visualization package for the R language

[38, 15]. All software is available as open source on http://githu

b.com/molgenis for others to reuse locally. Related technical doc-

umentation is available at http://www.molgenis.org/xqtl2, h

ttp://www.rqtl.org and http://www.molgenis.org.

4.3 Results

To demonstrate the added value of WormQTLHD, we have reproduced

findings from known studies and have shown that novel insights and

hypotheses can be achieved with little time and effort. Subsequently,

we performed a broad-sweep disease-enrichment test to find all non-

evident phenologs and to explore which new putative candidate genes

for human diseases could be elucidated for future research.

4.3.1 Case 1: Linking disease to worm phenotype
from McGary et al. [226]

McGary et al. performed a phenolog mapping between the high inci-

dence of male C. elegans progeny to human breast/ovarian cancers. Of

4,649 total orthologues, McGary et al. reported 3 overlapping genes of

12 human disease-associated genes and 16 worm phenotype-associated

genes—which is a significant enrichment (hypergeometric test P-value

of ≤ 7.2 x 10-6). From the 13 worm phenotype-associated genes that

were not overlapping, 9 had orthologues that had already been linked to

breast cancer in the primary literature. They implicated the remaining

four genes as new breast cancer candidates. We replicated these find-

ings using the ComparePheno tool of WormQTLHD, searching for the

2The URL in the original paper is no longer active and was updated here.
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WormBase phenotype ‘high incidence male progeny’. The first human

disease among the results is ‘{Breast cancer, susceptibility to}, 114480

(3)’ from OMIM. Our tool reported 2 overlapping genes of 4 human

disease-associated genes and 63 genes from the worm phenotype. This

resulted in a P-value ≤ 1.4 x 10-3 (uncorrected). The second best

human hit in the results is ‘malignant neoplasm of ovary’ from DGA.

We found two overlapping genes of six ovarian cancer associated genes,

resulting in a P-value ≤ 3.41 x 10-3 (uncorrected). ComparePheno

also indicated enrichment of these categories. The P-values are ‘less

significant’ than McGary et al. because (i) their definition of ‘high inci-

dence male progeny’ included only 16 rather than 63 genes and (ii) they

used an older INPARANOID version, so the overlap test was performed

on a different orthologue mapping. Together, these results from our

database do indeed replicate their findings. See Online Use Case 1 on

the Help page to repeat this case.

4.3.2 Case 2: Worm eQTL hotspot from two tem-
perature expression data from Li et al. [205]

Li et al. [205] found an eQTL hotspot (77.56Mb on chromosome V)

on the worm genome in which genetic variation is associated with the

expression of 66 genes, while these genes are located elsewhere on

the genome. This indicates that these genes are possibly involved in

the same biological process/pathway and potentially share a regula-

tory element. They may be physically located on the eQTL hotspot,

which controls gene expression responding to different ambient tem-

peratures. First, we used the Region2disease tool and input positions

ChrV:15430739-16430739 (a non-cumulative 1 Mb region around the

hotspot). We put all 931 probes located in this region in the shopping

cart, and selected ‘Disease enrichment’. The best hit was ‘Response to

antineoplastic agents’ (agents used in chemotherapeutic treatment of

cancer) from GWAS Catalogue (P-value ≤ 4.92 x 10-3, uncorrected).

For this hit, the associated human gene, PPP2R5E, is orthologous to
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WBGene00012348 (pptr-1) present in this region. The best WormBase

hit is ‘thermotolerance increased’ (P-value ≤ 1.5 x 10-2, uncorrected),

also via association with pptr-1. Padmanabhan et al. [251] showed that

pptr-1 is involved in regulating subcellular localization and transcrip-

tional activity of the forkhead transcription factor daf-16. Rodriguez et

al. [294] reviewed the role of heat stress response experiments in C.

elegans for detecting human disease genes. They reported that daf-16

in worms controls lifespan and stress response. In humans, the daf-16

orthologue FOXO3A is associated with aging and prevalence of cancer

[369]. Using the Disease2QTL tool, a search for ‘Response to antineo-

plastic agents’ results in six probes for orthologues of PPP2R5E (WB-

Gene00012348) and ACOX3 (WBGene00019060). We selected them

all and plotted the QTLs. This revealed a highly significant (LOD >

50) cis-eQTL for pptr-1 in the Rockman et al. [293] dataset. Given

all the evidence, we believe pptr-1 might be an interesting candidate

in the further development of a temperature-based C. elegans model

for understanding human cancer and developing potential therapeutic

drugs. Moreover, it shows that combining the ‘Region2disease’ and

‘Disease2QTL’ tools can lead to an interesting hypothesis ready for

experimental validation. See Online Use Case 2 on the Help page to

reproduce this case.

4.3.3 Case 3: Osmotic stress as a model for Bardet-
Biedl syndrome from Rodriguez et al. [294]

Rodriguez et al. proposed hypertonic or osmotic stress in C. elegans

as a model to study human diseases related to protein aggregation,

such as Alzheimer’s and Parkinson’s. Hypertonic stress due to loss of

water causes an intracellular ionic imbalance, which leads to rapid ac-

cumulation of organic osmotic glycerol and accumulation of damaged

proteins. Shaye and Greenwald [307] showed that osm-12 (associated

with osmotic stress response) is orthologous to BBS7 in man, which is

associated to Bardet-Biedl syndrome [20]. We used the Disease2QTL

88



1

2

3

4

5

6

7

8

4.3. RESULTS

tool to look for QTLs associated with Bardet-Biedl syndrome by se-

lecting all ‘Bardet-Biedl syndrome’ entries (seven in total) from OMIM.

When we plotted the QTLs in worm for these entries, three significant

eQTLs (LOD > 5) were found for osm-12 (in cis), bbs-5 (also in cis)

and bbs-2 (in trans). The strongest QTL (LOD > 6) was found for

bbs-5, reported by probe AGIUSA3442 in the Rockman et al. dataset.

We used the QTL2disease tool to investigate this QTL further. It re-

vealed a nearby, very significant eQTL (LOD > 10) for a gene named

T07C4.10, which can be investigated further as a potential candidate

for this disease model. See Online Use Case 3 on the Help page to

replicate this example.

4.3.4 Novel disease-gene associations by ‘broad-sweep’
disease-enrichment test

We performed hypergeometric gene overlap tests to find phenologs be-

tween all worm phenotypes versus all human diseases. Table 4.1 lists

the 15 most significant hits for human diseases that have significant

gene overlap with worm phenotypes (see Tables 4.2 and 4.3 for the top

100). New candidate genes for human diseases can be discovered from

phenologs by investigating human orthologues of worm genes that did

not overlap with known human genes of the disease of interest.

McGary et al. [226] reported ‘Zellweger syndrome’ in man to be a

phenolog with ‘Reduced number of peroxisomes’ in yeast (P-value <

1.0 x 10-9). Our best hit was ‘Zellweger syndrome’ with ‘peroxisome

physiology variant’ in worm (P-value < 3.6 x 10-10). Encouragingly,

certain top hits such as ‘coenzyme Q depleted’ in worm versus ‘Coen-

zyme Q10 deficiency’ in man, and ‘spontaneous mutation rate increased’

in worm versus ‘Mismatch repair cancer syndrome’ in man make sense,

thereby validating this approach and adding credibility to potentially

non-evident human disease models.

89



1 2 3 4 5 6 7 8

C
H

A
P

T
E

R
4

.
L

IN
K

IN
G

H
U

M
A

N
D

IS
E

A
S

E
T

O
C
.
E
L
E
G
A
N
S

Phenotype1 (Ce) Phenotype2 (Hs) n1 n2 k P-value

Peroxisome physiology variant Zellweger syndrome, 214100 (3) [OMIM] 3 4 3 3.58E-10
Coenzyme Q depleted Coenzyme Q10 deficiency, 607426 (3) [OMIM] 9 3 3 7.53E-09
Spontaneous mutation rate
increased

Mismatch repair cancer syndrome, 276300 (3)
[OMIM]

42 4 4 9.88E-09

Mitochondrial metabolism
variant

Coenzyme Q10 deficiency, 607426 (3) [OMIM] 17 3 3 6.09E-08

AWA odorant chemotaxis
defective

Cardiofaciocutaneous syndrome, 115150 (3)
[OMIM]

3 2 2 3.64E-07

Peroxisome physiology variant Adrenoleukodystrophy, neonatal, 202370 (3)
[OMIM]

3 3 2 1.09E-06

AWC odorant chemotaxis
defective

Cardiofaciocutaneous syndrome, 115150 (3)
[OMIM]

5 2 2 1.21E-06

Germ nuclei rachis Cardiofaciocutaneous syndrome, 115150 (3)
[OMIM]

6 2 2 1.82E-06

Excretory cell development
variant

Rheumatoid arthritis [GWAS Catalogue] 3 5 2 3.64E-06

Bacterially unswollen Cardiofaciocutaneous syndrome, 115150 (3)
[OMIM]

11 2 2 6.67E-06

Organism starvation response
variant

Ovarian cancer, somatic, 604370 (3) [OMIM] 12 2 2 8.00E-06

Neuron development variant Diastolic blood pressure [GWAS Catalog] 17 11 3 9.85E-06
Ventral closure defective Wiskott-Aldrich syndrome [DGA] 8 3 2 1.02E-05
Egg laying imipramine resistant Bone mineral density [GWAS Catalog] 26 23 4 1.08E-05
mRNA export variant disease by infectious agent [DGA] 4 6 2 1.09E-05

Table 4.1: Top 15 results for the ‘broad-sweep’ disease enrichment. n1 indicates the number of orthologues

in C. elegans (Ce) with phenotype1, n2 the number in H. sapiens (Hs) with phenotype2 and k the number in

both sets. The significance of each phenolog is assessed by the hypergeometric probability (P-value).
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Phenotype1 (Ce) Phenotype2 (Hs) n1 n2 k P-value

constipated Cardiofaciocutaneous syndrome, 115150 (3)
[OMIM]

14 2 2 1.10E-05

neuron development variant Blood Pressure [GWAS Central] 17 12 3 1.31E-05
reproductive system development
variant

Palmitoleic acid (16:1n-7) plasma levels [GWAS
Catalog]

6 5 2 1.82E-05

germ cell morphology variant Wiskott-Aldrich syndrome [DGA] 112 3 3 2.04E-05
life span variant Coenzyme Q10 deficiency, 607426 (3) [OMIM] 114 3 3 2.15E-05
organism starvation response
variant

Colorectal cancer, somatic, 114500 (3) [OMIM] 12 3 2 2.40E-05

gastrulation variant vaccinia [DGA] 21 2 2 2.55E-05
neuron development variant Blood pressure [GWAS Catalog] 17 15 3 2.69E-05
epithelial morphology variant Wiskott-Aldrich syndrome [DGA] 13 3 2 2.83E-05
osmotic stress response variant Chronic obstructive pulmonary disease [GWAS

Catalog]
13 3 2 2.83E-05

radiation induced reproductive cell
death variant

Mismatch repair cancer syndrome, 276300 (3)
[OMIM]

10 4 2 3.26E-05

distal tip cell development variant Pulmonary function (interaction) [GWAS
Catalog]

6 7 2 3.81E-05

dauer arrest variant Ovarian cancer, somatic, 604370 (3) [OMIM] 26 2 2 3.94E-05
bag of worms Heart Rate [GWAS Central] 29 2 2 4.92E-05
halothane hypersensitive Leigh syndrome, 256000 (3) [OMIM] 6 8 2 5.07E-05
vulvaless Cardiofaciocutaneous syndrome, 115150 (3)

[OMIM]
30 2 2 5.27E-05

transgene expression variant Pulmonary function (interaction) [GWAS
Catalog]

147 7 4 5.30E-05

sodium chloride chemotaxis
defective

Cardiofaciocutaneous syndrome, 115150 (3)
[OMIM]

31 2 2 5.64E-05

synaptogenesis variant Hippocampal atrophy [GWAS Catalog] 13 4 2 5.65E-05
body size variant Inflammatory bowel disease [GWAS Catalog] 11 30 3 5.77E-05
gastrulation variant Wiskott-Aldrich syndrome [DGA] 21 3 2 7.61E-05
pathogen susceptibility increased Cardiofaciocutaneous syndrome, 115150 (3)

[OMIM]
36 2 2 7.64E-05

level of protein expression variant hepatitis B [DGA] 39 2 2 8.98E-05
male gonad morphology variant Bone mineral density [GWAS Catalog] 3 23 2 9.17E-05
flaccid Electrocardiographic traits [GWAS Catalog] 13 5 2 9.41E-05
paraquat resistant Ovarian cancer, somatic, 604370 (3) [OMIM] 41 2 2 9.94E-05
reproductive system development
variant

Metabolic traits [GWAS Catalog] 6 11 2 9.94E-05

spontaneous mutation rate
increased

Muir-Torre syndrome, 158320 (3) [OMIM] 42 2 2 1.04E-04

dauer formation variant Ovarian cancer, somatic, 604370 (3) [OMIM] 43 2 2 1.09E-04
dauer arrest variant Colorectal cancer, somatic, 114500 (3) [OMIM] 26 3 2 1.18E-04
loss of asymmetry ASE Cardiofaciocutaneous syndrome, 115150 (3)

[OMIM]
47 2 2 1.31E-04

large cytoplasmic granules early
emb

Eye Color [GWAS Central] 28 3 2 1.37E-04

gonad sheath contraction rate
reduced

Systolic blood pressure [GWAS Catalog] 7 11 2 1.39E-04

osmotic stress response variant Sudden cardiac arrest [GWAS Catalog] 13 6 2 1.41E-04
male tail morphology variant substance dependence [DGA] 29 3 2 1.47E-04
dauer constitutive Ovarian cancer, somatic, 604370 (3) [OMIM] 50 2 2 1.49E-04
excessive blebbing early emb Eye Color [GWAS Central] 30 3 2 1.57E-04
nucleus reforms cell division
remnant early emb

lymphoma [DGA] 14 6 2 1.64E-04

egg laying variant Body mass index (interaction) [GWAS Catalog] 228 3 3 1.75E-04
cell polarity reversed Bone mineral density [GWAS Catalog] 4 23 2 1.83E-04
nuclear positioning variant hepatitis [DGA] 18 5 2 1.84E-04
alae variant Immune reponse to smallpox (secreted

IFN-alpha) [GWAS Catalog]
11 8 2 1.85E-04

habituation variant Asthma [GWAS Catalog] 15 6 2 1.89E-04

Table 4.2: Result hits 16-58 for the ‘broad-sweep’ disease enrichment. n1
indicates the number of orthologues in C. elegans (Ce) with phenotype1, n2
the number in H. sapiens (Hs) with phenotype2 and k the number in both
sets. The significance of each phenolog is assessed by the hypergeometric
probability (P-value).

91



1

2

3

4

5

6

7

8

CHAPTER 4. LINKING HUMAN DISEASE TO C. ELEGANS

Phenotype1 (Ce) Phenotype2 (Hs) n1 n2 k P-value

age associated fluorescence
increased

narcolepsy [DGA] 57 2 2 1.94E-04

pharyngeal development variant PR interval [GWAS Catalog] 24 4 2 1.99E-04
movement variant Acute lymphoblastic leukemia (childhood) [GWAS

Catalog]
19 5 2 2.06E-04

miRNA expression variant Type 2 diabetes [GWAS Catalog] 50 25 4 2.12E-04
hypoxia hypersensitive Mismatch repair cancer syndrome, 276300 (3)

[OMIM]
25 4 2 2.17E-04

P0 spindle rotation failure early
emb

Colitis, Ulcerative [GWAS Central] 9 11 2 2.38E-04

paralyzed body Dyssegmental dysplasia, Silverman-Handmaker
type, 224410 (3) [OMIM]

1 1 1 2.46E-04

protein phosphorylation
increased

glioma [DGA] 21 5 2 2.52E-04

transgene expression variant Red blood cell traits [GWAS Catalog] 147 17 5 2.52E-04
anaphase bridging lymphoma [DGA] 18 6 2 2.75E-04
body wall muscle morphology
variant

Response to antidepressant treatment [GWAS
Catalog]

22 5 2 2.77E-04

coelomocyte uptake defective Peters anomaly, 604229 (3) [OMIM] 70 2 2 2.93E-04
paraquat resistant Colorectal cancer, somatic, 114500 (3) [OMIM] 41 3 2 2.96E-04
HSN migration variant Bone mineral density [GWAS Catalog] 24 23 3 2.97E-04
small Leukoencephalopathy with vanishing white matter,

603896 (3) [OMIM]
174 4 3 2.99E-04

embryo osmotic integrity
defective early emb

Cardiofaciocutaneous syndrome, 115150 (3)
[OMIM]

71 2 2 3.01E-04

endomitotic oocytes glioma [DGA] 23 5 2 3.04E-04
egg laying defective Bone mineral density [GWAS Catalog] 174 23 6 3.11E-04
dauer formation variant Colorectal cancer, somatic, 114500 (3) [OMIM] 43 3 2 3.26E-04
P0 spindle rotation delayed
early emb

Platelet counts [GWAS Catalog] 6 20 2 3.41E-04

drug induced gene expression
variant

Ventricular conduction [GWAS Catalog] 10 12 2 3.55E-04

multiple nuclei oocyte Cholesterol [GWAS Central] 45 3 2 3.58E-04
extended life span Leigh syndrome, 256000 (3) [OMIM] 206 8 4 3.83E-04
short Palmitoleic acid (16:1n-7) plasma levels [GWAS

Catalog]
26 5 2 3.89E-04

lipid composition variant Urate levels [GWAS Catalog] 9 14 2 3.92E-04
fat content increased Ovarian cancer, somatic, 604370 (3) [OMIM] 81 2 2 3.93E-04
fewer germ cells Mean corpuscular hemoglobin [GWAS Catalog] 34 4 2 4.04E-04
oogenesis variant rheumatoid arthritis [DGA] 83 2 2 4.13E-04
oocyte number decreased Cholesterol, LDL [GWAS Central] 194 4 3 4.14E-04
germ cell compartment
anucleate

Cardiofaciocutaneous syndrome, 115150 (3)
[OMIM]

84 2 2 4.23E-04

early larval lethal kidney disease [DGA] 85 2 2 4.33E-04
dauer constitutive Colorectal cancer, somatic, 114500 (3) [OMIM] 50 3 2 4.42E-04
transgene expression variant Systolic blood pressure [GWAS Catalog] 147 11 4 4.46E-04
sex determination variant Bone mineral density [GWAS Catalog] 6 23 2 4.54E-04
body wall muscle thick filament
variant

Atrial septal defect 3 (3) [OMIM] 2 1 1 4.92E-04

response to injury variant Ulcerative colitis [GWAS Catalog] 6 24 2 4.95E-04
diplotene progression during
oogenesis variant

Response to Vitamin E supplementation [GWAS
Catalog]

38 4 2 5.05E-04

osmotic stress response variant Systolic blood pressure [GWAS Catalog] 13 11 2 5.12E-04
male tail morphology variant Bone mineral density [GWAS Catalog] 29 23 3 5.27E-04
anchor cell invasion variant Attention deficit hyperactivity disorder [GWAS

Catalog]
57 12 3 5.27E-04

exploded through vulva Bone mineral density [GWAS Catalog] 277 23 7 6.03E-04
antimicrobial gene expression
variant

Ventricular conduction [GWAS Catalog] 13 12 2 6.13E-04

Table 4.3: Result hits 59-100 for the ‘broad-sweep’ disease enrichment. n1
indicates the number of orthologues in C. elegans (Ce) with phenotype1, n2
the number in H. sapiens (Hs) with phenotype2 and k the number in both
sets. The significance of each phenolog is assessed by the hypergeometric
probability (P-value).
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4.4 Discussion

The current version of WormQTLHD (August 2013) is a comprehensive

and compendious database that enables molecular model organism data

to be studied in the context of human diseases. Just as with WormQTL

[315]3, we believe that WormQTLHD will be continuously curated by the

members of the C. elegans community. The results of the ‘broad-sweep’

disease-enrichment test in combination with the web tool will be of

special interest to researchers in the human or worm domain. We believe

these results could also be applied to prioritize the pathogenic variants

increasingly being produced by next-generation sequencing in diagnostic

labs. Genetic variants affecting human genes of unknown function may

have worm orthologues that are part of human-worm phenologs and

these may reveal or imply a role in a human disease. Thus, through

functionally conserved networks, missing information can be inferred

and candidate genes can be selected via model organisms.

The approach of WormQTLHD is conceptually similar to that de-

scribed by Smedley et al. [310]. They created an automated method

called PhenoDigm to provide evidence about gene-disease associations

by analysing phenotypic information. In their case, phenotypes con-

sist of a collection of ontology terms, which are aligned and scored to

derive an overall phenotype-similarity score. Using this method, known

gene-phenotype associations in model organisms (mouse, zebrafish) can

be transferred to other organisms such as man, and help us to under-

stand the genetic cause of disease. This method works best when the

model organism is physiologically close to man and has comparable

classical phenotypes. It would therefore be less useful for C. elegans.

However, combining the molecular (WormQTLHD) and phenotypical

(PhenoDigm) approaches may result in a very powerful tool to discover

novel gene-disease associations in man, especially when using physio-

logically close model organisms.

We plan to further develop the WormQTLHD data and toolset.

3The original paper erroneously cited [294] here.
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There might be more ways in which researchers would like to search

through the large amounts of data, for example, based on custom lists

of gene identifiers, or by combining tools such as finding QTLs within

specific regions. The QTL plots could be improved or replaced with

interactive graphs that are more informative and would allow the users

to continue ‘drilling down’ in the data instead of returning to the home

page for a new analysis with a different tool. Furthermore, we envisage

close integration with other data sources and tools such as WormNet,

R/qtl and GO Enrichment to provide even more biological context and

analytical tools for the user.

Our new database makes this data attractive and easy-to-use for

an even wider community of quantitative geneticists working on worms

and man. We are committed to maintaining the data and software in

the future and invite the community to add and share their new data

and ideas.

Supplementary Data

Supplementary Data are available at NAR Online.
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Figure 4.3: WormQTLHD poster. Special thanks to Roberto Robert for kind

permission to use his incredible artwork. This figure was not part of the

published article but has eye-catching properties (anecdotal evidence only).
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5.1. INTRODUCTION

Abstract

Next-generation sequencing in clinical diagnostics is providing valuable

genomic variant data, which can be used to support healthcare deci-

sions. In silico tools to predict pathogenicity are crucial to assess such

variants and we have evaluated a new tool, Combined Annotation De-

pendent Depletion (CADD), and its classification of gene variants in

Lynch syndrome by using a set of 2,210 DNA mismatch repair gene

variants. These had already been classified by experts from InSiGHT’s

Variant Interpretation Committee. Overall, we found CADD scores do

predict pathogenicity (Spearman’s ρ = 0.595, P < 0.001). However, we

discovered 31 major discrepancies between the InSiGHT classification

and the CADD scores; these were explained in favor of the expert classi-

fication using population allele frequencies, cosegregation analyses, dis-

ease association studies, or a second-tier test. Of 751 variants that could

not be clinically classified by InSiGHT, CADD indicated that 47 vari-

ants were worth further study to confirm their putative pathogenicity.

We demonstrate CADD is valuable in prioritizing variants in clinically

relevant genes for further assessment by expert classification teams.

Key words: Lynch syndrome; variant classification; pathogenicity pre-

diction; cumulative link model

5.1 Introduction

Reliable estimation of gene variant pathogenicity, especially for missense

variants and small in-frame insertions/deletions (indels), is a major chal-

lenge in clinical genetics. This challenge is now being exacerbated by

the introduction of next-generation sequencing in clinical diagnostics,

which is identifying large numbers of candidate disease-causative vari-

ants, ranging from about 250 [212], to 400–700 [378], up to a mean

of 1,083 [302] variants per exome, depending on which filter steps and

stringency are applied. Since it is not feasible to perform functional

analysis of each variant, in silico tools have become an important tool
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in assessing variant pathogenicity. Unfortunately, although there are

many potential methodologies and tools [68], they often lack clinical

validation. As the adaptation of high-throughput sequencing in clinical

practice increases, the need for standardized, validated, and easy-to-use

in silico classification tools is becoming even more pressing [302, 378].

The recently launched Combined Annotation Dependent Depletion

(CADD) [185] method offers a standardized, genome-wide, variant scor-

ing metric (C-score) that incorporates the weighted results of widely

used in silico pathogenicity prediction tools, such as SIFT [187] and

PolyPhen [5], and of genomic annotation sources like ENCODE [85].

The resulting CADD scores are expressed as a measure of deleterious-

ness (selection pressure bias) for single-nucleotide variants (SNVs) and

small indels. A high score represents variants that are not stabilized

by selection, which are more often disease-causing than expected by

random chance [185]. In contrast, a low score indicates that a vari-

ant resembles evolutionary stable, commonly occurring genetic varia-

tion that poses no apparent disadvantage for an organism. The scores

were shown to correlate strongly to known variant pathogenicity, such as

those causing a predisposition to autism spectrum disorders, intellectual

disability, thalassemia, and more broadly to pathogenic variants taken

from the NHGRI GWAS catalog [363] and ClinVar [190] database. To

make interpretation and comparison easier, C-scores are logarithmically

ranked to form scaled C-scores, similar to how PHRED scores are used

in the FASTQ format.

As an easy-to-use resource that brings out the predictive power of

many programs and data combined, CADD may replace the plethora of

tools currently being used. However, before considering implementation

of CADD in clinical work, it is important to evaluate and validate its

utility by comparing its outcome with that of existing, consistent, large-

scale expert assessments.

The Variant Interpretation Committee (VIC) is an expert panel of

the International Society for Gastrointestinal Hereditary Tumours (In-

SiGHT). They conducted a thorough clinical classification of 2,360
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variants (as of February 2014) in the DNA mismatch repair (MMR)

genes MLH1 (MIM #120436), MSH2 (MIM #609309), MSH6 (MIM

#600678), and PMS2 (MIM #600259) that had been identified in pa-

tients suspected of having Lynch syndrome [337]. This cancer predispo-

sition syndrome, previously known as hereditary nonpolyposis colorectal

cancer, is caused by DNA MMR deficiency.

The InSiGHT variant classification method is based on a combina-

tion of clinical and experimental (molecular) evidence, such as family

history and cosegregation with the disease, tumor findings, population

allele frequencies, and mRNA/protein functional assays (in accordance

with established guidelines, available at http://www.insight-gr

oup.org/criteria).

The variants were classified following a five-tier system [268], with

class descriptions as follows:

• Class 1: not pathogenic/no clinical significance.

• Class 2: likely not pathogenic/little clinical significance.

• Class 3: uncertain clinical significance.

• Class 4: likely pathogenic.

• Class 5: pathogenic.

Variants that cannot be placed in classes 1, 2, 4, or 5 based on

existing evidence are assigned to class 3 by default and are considered

variants of uncertain clinical significance. It is recognized [337] that

class 3 may include some cases with conflicting evidence.

Here, we investigate whether CADD scores are concordant with vari-

ant classifications assigned by the InSiGHT VIC. We show that, overall,

CADD and InSiGHT yield similar results, but that there are also some

important discordant cases. Our contributions in this paper are:

1. An extensive evaluation of agreement between the in silico CADD

predictions and the InSiGHT expert classifications of variant pa-

thogenicity.
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2. Detection and assessment of conflicting classifications.

3. A CADD-based prioritization of variants of uncertain clinical sig-

nificance.

4. Assessment of the reliability of CADD for use in a clinical setting.

These contributions shed light on an important question in clinical ge-

netic diagnostics: are bioinformatics tools powerful enough to enable

genome-wide variant interpretation without loss of quality when com-

pared with classification by clinical expert panels that can also take

into account a range of clinical and molecular data relevant for specific

genetic diseases?

5.2 Materials & Methods

5.2.1 Data processing

We downloaded 2,744 variants (as of February 2014) from the InSiGHT

LOVD database (at http://chromium.liacs.nl/LOVD2/colo

n_cancer/) for MLH1, MSH2, MSH6 and PMS2. RefSeq identifiers

NM 000249.3, NM 000251.2, NM 000179.2, NM 000535.5 were added

to the cDNA position. This allowed the successful conversion of 2,582

variants to genomic DNA notation in VCF format by running Ensembl

VEP5[228]. CADD (version 1.0) was able to score 2,580 of those (NM

000249.3:c.1254T>R and NM 000535.5:c.1875A>Y failed). Of these

2,580 variants, 370 were not assessed by InSiGHT, or in a few cases

belonged to multiple classes. This means that 2,210 variants were clas-

sified and belong to one of the five classes of the International Agency

for Research on Cancer (IARC) five-tiered classification system: 151

variants belong to class 1 (not pathogenic), 84 to class 2, 751 to class

3, 181 to class 4, and 1,043 to class 5 (pathogenic).

In addition, we ran SnpEff to obtain functional effect predictions us-

ing canonical transcript references and an upstream downstream interval

102

http://chromium.liacs.nl/LOVD2/colon_cancer/
http://chromium.liacs.nl/LOVD2/colon_cancer/


1

2

3

4

5

6

7

8

5.2. MATERIALS & METHODS

length of five bases. The output was curated to reduce the number of

effects from two to one in the case of both INTRON and SPLICE SITE

“effects,” by removing the INTRON effect. We used NM 000251.2 for

MSH2 (whereas the LOVD was based on NM 000251.1) to enable EN-

SEMBL VEP to process the data, without issues (out of 920 MSH2

variants, 855 were successfully converted to VCF/gDNA notation).

5.2.2 Cumulative link model

To detect discrepancies between the CADD scores and the InSiGHT

classification, we assumed that a partitioning of the scores would exist.

In other words, the continuous scaled C-scores can be binned into the

ordinal IARC classes. Working on this assumption, we were able to

define a cumulative link model (ordinal regression) [6, 225]. In a cumu-

lative link model, an ordinal response variable Yi can fall in j = 1, . . . , J

ordered classes. This response variable Yi then follows a distribution

with parameter πi where πij denotes the probability that the ith obser-

vation falls in the jth response class (such that ∑
J
j=1 πij = 1). Since

we are dealing with individual observations (instead of counts) the cat-

egorical distribution is used, which can be viewed as a special case of

the multinomial distribution of n observations Yi ∼ Mult(n, πi) with

n = 1:

Yi ∼ Categorical(πi)

The cumulative probability is then defined as:

γij = P(Yi ≤ j) = πi1 + . . . + πij

Here we considered a proportional odds model, using a logit link func-

tion: logit(p) = log[p/(1 − p)]. The cumulative logits for all but the

last class, j = 1, . . . , J − 1, are then defined as:
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logit(γij) = logit(P(Yi ≤ j))

= log
P(Yi ≤ j)

1 − P(Yi ≤ j)

This gives a regression for the cumulative logits:

logit(γij) = θj − x
⊤
i β

where θj represents the logit-scaled cut-off for class j, xi being the

vector of explanatory variables for the ith observation and β is the

corresponding set of regression parameters. Note that x
⊤
i β does not

contain an intercept. The parameters θj act as a set of continuous

”cut-off points” such that −∞ < θ1 < . . . < θJ−1 < ∞. To assess the

probability that the ith observation falls within one of ordinal response

classes j, we can write:

P(Yi = j | x
⊤
i β) =







γij, j = 1

γij − γi(j−1), j = 2, . . . , J − 1

1 − γi( J−1), j = J

We used the CADD score as an explanatory variable for the ordi-

nal response of InSiGHT. The parameters were estimated using JAGS, a

program for analysis of Bayesian graphical models using Gibbs sampling

[269]. Convergence of the Markov Chain Monte Carlo inference was as-

sessed using the potential scale reduction factor[270, 120]. Figure 5.1

shows the probability that a given CADD score belongs to a certain

InSiGHT class by using the posterior distributions for θ after conver-

gence. Discrepancies were detected by analyzing the deviance of the

observations. Deviance can be thought of as a measure of ”surprise”,

how likely a certain observation is under the fitted parameters of the

model. Formally:
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D(Yi, θ̂) = −2 log[P(Yi|θ̂)]

with Yi being the observation and θ̂ the parameters of the fitted model.

Observations of θ corresponding to variants in the 95th percentile of the

mean deviance—those with the highest deviance—were re-examined.
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Figure 5.1: Probability that a CADD score will belong to a certain InSiGHT

class. The inverse logit (logit−1) was applied to each of the response variables.

Classes 2 and 4 are dominated by class 3 under this model.

105



1

2

3

4

5

6

7

8

CHAPTER 5. EVALUATION OF CADD SCORES IN MMR GENES

5.2.3 Data availability

The data and scripts used in this paper can be downloaded from: http

://molgenis.org/downloads/vdVelde_Kuiper_etal_201

5/

5.3 Results

5.3.1 Exploratory data analysis

We calculated the CADD scores for 2,744 MMR gene variants that

were downloaded from the InSiGHT group LOVD (available at http

://chromium.liacs.nl/LOVD2/colon_cancer/). A total of

534 variants had to be omitted, either because converting the com-

plementary DNA HGVS nomenclature[79] based notation to genomic

DNA VCF (Variant Call Format version 4.0 [73]) based notation failed

(162 variants), or the CADD scores could not be unambiguously as-

signed (2 variants with T>R and A>Y substitutions), or because they

had not yet been classified by the InSiGHT VIC (i.e., they were recent

submissions, or not reported as germline variants [370 variants]). See

Figure 5.2 and Materials & Methods for details. The 2,210 remaining

variants fell within one of the five classes: class 1 (n = 151), class 2 (n

= 84), class 3 (n = 751), class 4 (n = 181), or class 5 (n = 1,043).

Overall, the CADD scaled C-score distributions for each class cor-

relate with the InSiGHT classification (Spearman’s ρ = 0.595, p <

0.001). In Figure 5.3, the distribution of the scores per class is repre-

sented in a beanplot[179]. See also Figures 5.4, 5.5, 5.6 and 5.7 for

CADD scores of the InSiGHT variants for each gene, using known vari-

ants identified in the Genome of the Netherlands[243, 244] and 1000

Genomes[63] projects as population background reference.
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5.3.2 Discrepancy assessment

Using a Bayesian cumulative link model, we identified 108 (4.89%

of 2,210) cases for which a different class would be assigned (see

Materials & Methods). Further analysis focused on the cases for which

the nonpathogenic (class 1) and pathogenic (class 5) classifications were

reversed, as these suggested major disagreements between CADD and

the InSiGHT VIC verdict (see Table 5.1). The explanations per variant

for this analysis can be found in Table 5.2 and Table 5.3.

InSiGHT classification

CADD model Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 135 19

Class 2 71

Class 3 4 1 704 3 3

Class 4 171

Class 5 12 12 47 7 1021

Table 5.1: Number of InSiGHT variants reassigned to alternative classes

according to the cumulative link model fitted on CADD scores.

5.3.3 False positives

We identified 12 variants (0.54% of 2,210) that were classified as non-

pathogenic (class 1) by the InSiGHT VIC, but they were predicted to

be pathogenic (class 5) according to the CADD-based cumulative link

model (see Materials & Methods). Re-examination of the available

data for these variants strongly supports the original InSiGHT classi-

fication based on the following evidence:

• Segregation data is inconsistent with the variant being a domi-

nant, high-risk, pathogenic sequence variant in pedigrees (likeli-

hood ratio ≤0.01).
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Gene Variant In-
SiGHT
class

CADD-
based
class

Explanation

MLH1 c.394G>C 1 5 Attenuated protein function, but does not
cause Lynch syndrome. Multifactorial
likelihood analysis posterior probability
<0.001

MLH1 c.1852
1853delinsGC

1 5 Low risk, not associated with Lynch.
Multifactorial likelihood analysis posterior
probability <0.001

MLH1 c.803A>G 1 5 Multiple microsatellite stable tumours and
does not segregate with disease.
Multifactorial likelihood analysis posterior
probability <0.001

MLH1 c.977T>C 1 5 Multiple microsatellite stable tumours and
does not segregate with disease.
Multifactorial likelihood analysis posterior
probability <0.001

MLH1 c.1853A>C 1 5 Multiple microsatellite stable tumours and
does not segregate with disease.
Multifactorial likelihood analysis posterior
probability <0.001

MLH1 c.2146G>A 1 5 Multiple microsatellite stable tumours and
does not segregate with disease.
Multifactorial likelihood analysis posterior
probability <0.001

MLH1 c.1151T>A 1 5 Population minor allele frequency >1%
MLH1 c.2152C>T 1 5 Population minor allele frequency >1%
MSH2 c.1077-

10T>C
1 5 Population minor allele frequency >1%

MLH1 c.1799A>G 1 5 Does not segregate with disease.
Multifactorial likelihood analysis posterior
probability <0.001

MLH1 c.790+10A>G 1 5 Does not cause splicing aberration and
does not segregate with disease.
Multifactorial likelihood analysis posterior
probability <0.001

MSH2 c.593A>G 1 5 May be low-moderate risk, but certainly
not high-risk associated with Lynch

MSH6 c.642C>A 5 1 Stop-gain variant causing protein
truncation

Table 5.2: Overview of explanations according to InSiGHT why the cumu-
lative link model based on CADD scores encountered certain false positives
and false negatives, pt. 1/2.
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Gene Variant In-
SiGHT
class

CADD-
based
class

Explanation

MSH6 c.642C>G 5 1 Stop-gain variant causing protein
truncation

MSH2 c.212-
478T>G

5 1 Splicing aberration introduces
premature termination codon
(also missed by SnpEff)

MSH2 c.646-3T>G 5 1 Splicing aberration introduces
premature termination codon

MSH2 c.367-480
645+644del

5 1 Deletion of Exon 3

MLH1 c.307-1420
380+624del

5 1 Deletion of Exon 4

MLH1 c.307-820
380+896del

5 1 Deletion of Exon 4

MLH1 c.381-415
453+733del

5 1 Deletion of Exon 5

MLH1 c.454-665
545+49del

5 1 Deletion of Exon 6 (raw score of
527)

MLH1 c.1039-675
1409+26del

5 1 Deletion of Exon 12 (raw score
of 361)

MLH1 c.1039-2329
1409+827del

5 1 Deletion of Exon 12 (raw score
of 353)

MLH1 c.1732-2243
1896+404del

5 1 Deletion of Exon 16

MSH2 c.1077-135
1276+119dup

5 1 Duplication of Exon 7 (also
missed by SnpEff)

MSH2 c.1077-220
1276+6245del

5 1 Deletion of Exon 7

MSH2 c.1277-572
1386+2326del

5 1 Deletion of Exon 8 (raw score of
464)

PMS2 c.804-?
903+?del

5 1 Deletion of Exon 8

PMS2 c.804-?
2006+?del

5 1 Deletion of Exons 8-11

PMS2 c.989-296
1144+706del

5 1 Deletion of Exon 10 (raw score
of 527)

PMS2 c.2276-113
2445+1596del

5 1 Deletion of Exon 14

Table 5.3: Overview of explanations according to InSiGHT why the cumu-
lative link model based on CADD scores encountered certain false positives
and false negatives, pt. 2/2.
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• Variant with reported frequency ≥1% in the general population

(1000 Genomes Project), and no evidence that variant is a founder

mutation.

• These are not high-risk variants that are uniquely associated with

Lynch syndrome (they have also been seen in individuals who do

not meet the international criteria for Lynch syndrome).

• Variant leads to a known attenuated protein function, but this

does not cause Lynch syndrome (it has also been seen in healthy

individuals and there is a lack of evidence for MMR deficiency as

shown by MSI and immunohistochemical testing).

Although these explanations are specific to Lynch syndrome-related vari-

ants, they indicate that CADD might overestimate the general pathogenic-

ity of some variants. Most overestimations could be easily resolved in a

clinical Standard Operating Procedure (SOP) by using population allele

frequency as a filter or incorporating the use of patient pedigree analysis

data; these are already common practices in many clinical laboratories.

The remainder could be resolved by incorporating more in-depth findings

from validated protein functional assays or from risk estimates based on

large, well-designed, case-control studies that consider cohort size, ge-

ography/ethnicity, and quality control measures[338]. An evaluation of

likely not pathogenic (class 2) variants predicted to be pathogenic (class

5) can be found in Table 5.4.

5.3.4 False negatives

We identified 19 cases (0.86% of 2,210) for which the cumulative link

model predicted the respective variants to be class 1, whereas InSiGHT

scored them as class 5. This indicates that the model might also under-

estimate effects. Similar to the approach to the false-positives, outlined

above, our re-examination of these variants supported the original In-

SiGHT classification.
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Gene Variant AA

change

Prob-

ability

VIC justification

MLH1 c.117-43

117-39del

intronic 0.99 Intronic substitution with no associated splicing aberration,

tested with NMD inhibitors

MLH1 c.845C>G A282G 0.92 Posterior probability 0.001-0.049

MLH1 c.885-

24T>A

intronic 0.81 Intronic substitution with no effect on splicing and MAF

0.01-1%

MLH1 c.974G>A R325Q 0.99 Posterior probability 0.001-0.049

MLH1 c.1742C>T P581L 0.55 Posterior probability 0.001-0.049. No CMMRD phenotype

with co-occurrence and MAF 0.01-1%

MLH1 c.1808C>G P603R 0.99 Posterior probability 0.001-0.049

MLH1 c.1820T>A L607H 0.99 Posterior probability 0.001-0.049

MSH2 c.991A>G N331D 0.69 Posterior probability 0.001-0.049

MSH2 c.1730T>C I577T 0.86 Posterior probability 0.001-0.049

MSH2 c.2500G>A A834T 0.99 Posterior probability 0.001-0.049

MSH6 c.3488A>T E1163V 0.92 MAF >1% in specific population

MSH6 c.4068

4071dup

Lys1358

Aspfs*2

0.99 MAF >1% in specific ethnic group

Table 5.4: Variants of class 2 (likely benign) for which class 5 (pathogenic) is the predicted class according

to the CADD-based model. Posterior probabilities are derived from a multifactorial likelihood analysis.

1
1

1



1

2

3

4

5

6

7

8

CHAPTER 5. EVALUATION OF CADD SCORES IN MMR GENES

CADD scores are developed for scoring any possible human SNVs or

small indels[185]. It was therefore expected that large structural variants

would be missed or inaccurately scored (for 5/15 structural variants) by

CADD. To simplify the interpretation, the scaled C-scores are based on

the rank of the C-score relative to all the C-scores for 8.6 billion possible

SNVs. Typical variant C-scores in this study ranged from -4 to 14, while

the five structural variants in question scored very highly (between 350

and 550), whereas was expected considering the likely pathogenicity of

exon deletions relative to missense variants or codon deletions, for ex-

ample. However, the scaling algorithm seems to fail for such extreme

C-scores, and this results in reverting the score for the respective vari-

ant into a very low scaled C-score instead. We applied SnpEff[60] as a

second-tier test. This tool has been developed to annotate and predict

the effects of variants in genes in a robust and qualitative way, thereby

complementing the quantitative nature of CADD scores. Using SnpEff,

we were able to correct 17 of the 19 false-negative cases. SnpEff recog-

nized 14 of the 15 structural variants, most as ”EXON DELETED”, one

of two splice aberrations as ”FRAME SHIFT”, and two of two truncat-

ing mutations as ”STOP GAINED”. These effect types are annotated

as HIGH impact in SnpEff, in contrast to MODIFIER, LOW or MOD-

ERATE effect types. By using SnpEff information, we have shown that

CADD results should be complemented by this tool, or a comparable

tool, to compensate for sporadic underestimations. See Figure 5.8 for

an overview of SnpEff variant effect predictions in relation to CADD

scores and InSiGHT classifications.

5.3.5 Variants of unknown significance

Class 3 mainly contains variants for which insufficient clinical or molec-

ular data are available, but also a limited number of variants that have

discordant findings (i.e., are resistant to classification). Most of these

variants can easily be assigned to another class as soon as more data

become available. As expected, the distribution of the CADD scores
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for class 3 variants, as visualized in Figure 5.3, is much flatter than

the distributions for the other classes. Matching the CADD score of

each class 3 variant to the distributions of the other classes (and thus,

the likelihood of belonging to one of them) allows us to propose an

endpoint classification that is, according to the model, more likely than

belonging to class 3 for these variants. In other words, we can sug-

gest prioritization of a variant for reclassification (using additionally

obtained clinical and molecular evidence) when its CADD score devi-

ates far enough from this mean, reaching a score that falls into the

distributions of known nonpathogenic or pathogenic variant classes (see

Materials & Methods).

We performed this analysis and 47 variants (2.13% of 2,210) that

the InSiGHT VIC classified as class 3 (uncertain significance) had CADD

scores ≥34, which fell in the >99% probability range for known class

5 (pathogenic) variants (see Figure 5.1). Of these 47 variants, 43 were

missense with a mean CADD score of 35.33 (σ = 1.04, 27 in MLH1,

10 in MSH2, four in MSH6 and two in PMS2). The remaining four

were truncating mutations: two stop-gain variants (c.2250C>A and

c.2250C>G, both with a CADD score of 41), and two frameshift vari-

ants (c.2252 2253del and c.2262del) with CADD scores of 39 and 40.

These four variants are all located in the MLH1 gene; they were classi-

fied as class 3 by the InSiGHT VIC due to insufficient evidence, because

the stop codons are introduced in the last exon (19) and are located

outside any known functional domains.

We compared these findings with the previous use of a prediction

model[337] on 481 substitutions[338] of uncertain effect. In this anal-

ysis, 173 InSiGHT missense variants of uncertain significance (class

3) with a >80% probability in favor of pathogenicity, were prioritized

for further investigation using multifactorial likelihood analysis. The

model calibrated a combination of in silico tools to predict probabilities

of pathogenicity, which is conceptually somewhat similar to the way

CADD scores are constructed, except here the model was specifically

for MMR gene variants associated with Lynch syndrome.
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By comparing the two sets of results, that is, the 173 previously

identified variants with our 43 prioritized variants, we found an overlap

of 24 variants(see Table 5.5). Since they were called by both mod-

els, we consider these 24 missense variants to be the most urgent

candidates for further research to determine their pathogenicity. Of

the remaining 19 variants prioritized uniquely by CADD, 17 had been

evaluated before with prior probabilities of pathogenicity ranging from

7% (MSH2:c.1418C>T) to 74-76% (MLH1: c.85G>T, c.187G>A,

c.299G>A, c.794G>A, c.955G>A, c.1976G>A, PMS2: 137G>A).

We also compared a CADD-based binary classifier for missense vari-

ants with the multifactorial likelihood model[337]. The multifactorial

model’s combination of customized MAPP + PolyPhen2 was found

to perform best with an R2 (the coefficient of determination) of 0.62

and an area under curve receiver operating characteristic (ROC-AUC)

of 93%, when distinguishing classes 1 + 2 collapsed as ”likely not

pathogenic” versus classes 4 + 5 collapsed as ”likely pathogenic”. As a

comparison, and not related to the cumulative link model, we performed

a binary classification using CADD scores and obtained a ROC-AUC of

85%, showing that while a CADD-based binary classifier for MMR gene

missense variants performs reasonably well, it does not perform as well

as a disease-specific model.

5.4 Discussion

We investigated the use of CADD scores for the prediction of clini-

cal classifications by comparing them with a high quality clinical data

set developed by the InSiGHT VIC, which is based on quantitative and

qualitative interpretation of both clinical and molecular data. Generally,

the CADD model predictions fitted the InSiGHT classification. Out of

the 2,210 variants we tested and classified by InSiGHT, we identified

12 (0.54%) nonpathogenic (class 1) variants that the CADD model

predicted to be pathogenic (class 5), and 19 variants (0.86%) of class
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5 that CADD predicted to be class 1. The difference could be ex-

plained by two considerations: the CADD model was not designed to

classify large structural or splice-site variants (55% of all the discordant

cases, 89% of the false-negatives), and the clinical observations, pop-

ulation allele frequencies, and experimental molecular data sometimes

convincingly suggested an alternative interpretation (39% of all discor-

dant cases, 100% of the false-positives). CADD’s main underestimation

of pathogenicity was due to its inability to accurately predict the effects

of whole exon deletions or duplications. In five such cases, the C-score

was in fact extremely high, but this was not translated into a high scaled

C-score. The use of a second-tier test, in this case SnpEff, boosted the

sensitivity of classifying via CADD by correcting 17 out of 19 of these

underestimations.

We showed that estimating the deleteriousness of whole exon dele-

tions/duplications is a weakness of CADD and this needs to be ad-

dressed. The InSiGHT data shows that such structural variation is

often pathogenic, but this is not always recognized by CADD. To avoid

incorrect results, and in line with the design limitations of CADD as

acknowledged by its authors, we recommend CADD should not be used

to judge the pathogenicity of large structural variation as part of an

automated variant processing pipeline.

We also investigated the 12 cases of pathogenicity overestimation

by CADD, which showed that these false-positives could be explained

by data used for the InSiGHT classification that was not used for in

silico prediction (such as the presence of the variant in the general

population or lack of cosegregation of the variant with the disease).

These results underscore the importance of using clinical data in the

diagnostic interpretation of variants.

There are a few variants in the InSiGHT database with a known

negative effect, such as attenuated protein function, that are classified

as nonpathogenic. The InSiGHT VIC require both concordant func-

tional and clinical evidence to assign pathogenicity; they do not accept

that attenuated function would necessarily be associated with Lynch
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Syndrome – or any phenotype for that matter. In our analysis, for

example, CADD predicted a deleterious effect for MLH1:c.394G>C,

which is indeed known to cause attenuated protein function[208], but

is not considered to be pathogenic in the context of Lynch syndrome

because it is not known to be associated with the causal phenotype.

Variant classifications such as those currently provided by the InSiGHT

VIC for MMR genes are specifically developed for a given phenotype,

namely, Lynch syndrome. Therefore, as acknowledged by the VIC[338],

they may not capture modest disease penetrance or other disease phe-

notypes associated with a given variant. This highlights the fact that

some apparent discrepancies may simply be explained by the difference

in application of ”research tools” such as CADD and ”clinical tools”

such as the InSiGHT database; the latter focuses on results that are of

practical value for a clinical geneticist instead of yielding a spectrum of

variants with possible intermediate penetrance that then require further

interpretation and individualized risk management protocols.

In general, there is limited added value in using CADD scores to

assess truncating variants since they are already known to often be

pathogenic for known disease genes. The field of in silico prediction

benefits most from the power of CADD scores when they are applied

to predict the pathogenicity of nonsynonymous SNVs. Here, we show

that CADD performs well on this type of variant for Lynch syndrome,

although a disease-specific model performs better.

We identified 47 variants that had been assigned by InSiGHT to

class 3 (uncertain significance), which, according to the CADD model,

had a high probability of being pathogenic. Of these, 24 missense

variants were already strongly suspected of being pathogenic by a pre-

vious in silico study on MMR gene variant classification[337] and we

consider them to be top candidates for further study to confirm their

pathogenicity. This suggests that CADD, in a fashion similar to existing

disease-specific pathogenicity prediction models, can help in prioritizing

variants for the collection of missing clinical and molecular data.

Taken together, we have shown that CADD scores are in high agree-
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ment with expert assessments of MMR gene variant pathogenicity that

is based on multiple data sources for quantitative-multifactorial and

qualitative analysis. As expected, CADD scores are not yet suitable to

interpret large structural variants such as deletions and duplications of

exons. Other underestimation effects are rare and often detectable with

a second-tier test. Any overestimated variants could be excluded based

on population frequency, cosegregation analyses, or evidence showing

no association or causality.

Calibrated in silico pathogenicity prediction models are not intended

to replace functional wet-laboratory studies, but are instead comple-

mentary methods to let clinics benefit from existing gold standard clas-

sifications, by accessing their expert knowledge and making it possible

to assess and prioritize novel variants with reasonable confidence, with-

out the need for often unfeasible amounts of laboratory work. We

believe CADD fits this translatory role very well, particularly because

of its generic and high-throughput nature. Although CADD cannot re-

place clinical and molecular validation, it can, in a practical sense, assist

in prioritizing variants for functional testing when an affected patient

carries multiple poorly understood candidate variants, reducing waiting

time for results.

However, translating this knowledge into a clinical setting is not

trivial. We constructed a model based on ordinal regression of known

classifications to calibrate CADD scores as a predictor of pathogenicity

for gene variants in the Lynch syndrome-associated MMR genes. Similar

efforts are required to unlock the potential of CADD scores as predictors

for other disorders, leading to gene- or disease-specific guidelines that

can help clinicians translate CADD scores into clinical practice. The

threshold for ”what is pathogenic” is expected to be rather different

to define depending on whether the disease is caused by dominantly

or recessively acting mutations, whether the disease is Mendelian or

complex/multigenic in origin, and so on. Although the fact that CADD

scores are largely based on conservation indicates that it may not work

as well for every gene, we believe that its overall usefulness is currently
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unmatched by other quantitative pathogenicity estimates.

As a preliminary proof of principle, we compared the distributions of

CADD scores of known pathogenic variants (from ClinVar[190]) with the

distributions of variants found in the general population (from Genome

of the Netherlands[243, 244] and 1000 Genomes[63]), for as many genes

as data availability allowed. This approach can be used to estimate the

predictive power of CADD scores and, thereby, provide valuable informa-

tion to clinicians regarding how effective CADD scores are for predicting

variant pathogenicity in the context of a specific gene. Encouragingly,

out of 373 genes with sufficient data, we found 272 genes (73%) for

which CADD has good predictive power (AUC of >90%).

However, this approach is currently still in development. For reliable

automated calibration of CADD scores on many genes into a clinical

setting, we need to consider many factors and sources of bias potentially

influencing the informativity of CADD scores, such as mutation spec-

trum, penetrance, disorder heterogeneity, variant classification quality,

classification semantics, and disorder inheritance patterns.

We conclude that in silico pathogenicity predictions are becoming

powerful enough to facilitate accurate variant prioritization, at least for

dominantly inherited disorders such as Lynch syndrome.
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Figure 5.2: Flowchart describing the steps and results of the analysis. [Note:

the original figure mentions 2,274 downloaded variants, this was corrected to

2,744 here.]
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Figure 5.3: Beanplot[179] showing the data points (green) and density

estimation (purple) of the scaled CADD C-score per InSiGHT class. The

width of the green lines is relative to the number of data points at that score.

Black horizontal lines indicate the mean per InSiGHT class; the dotted line

shows the overall mean. The mean scores of classes 1-5 show a respective

stepwise increase of 8.41 (σ = 7.46), 11.44 (σ = 7.72), 16.87 (σ = 9.40),

21.41 (σ = 6.13), and 29.04 (σ = 10.28). The unclassified group (class 3)

shows a flatter distribution than the other classes.
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Figure 5.4: CADD scaled C-scores vs. genomic coordinates for MLH1 gene variants. The green bands are

the exons. Red are InSiGHT variants, where triangles represent class 5, circles class 1, and plusses class

2-4. The black circles are variants seen in 1000 Genomes[63], blue circles are seen in the Genome of the

Netherlands[243, 244]. The gray dots represent all potential SNVs.
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Figure 5.5: CADD scaled C-scores vs. genomic coordinates for MSH2 gene variants. The green bands are

the exons. Red are InSiGHT variants, where triangles represent class 5, circles class 1, and plusses class

2-4. The black circles are variants seen in 1000 Genomes[63], blue circles are seen in the Genome of the

Netherlands[243, 244]. The gray dots represent all potential SNVs.
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Figure 5.6: CADD scaled C-scores vs. genomic coordinates for MSH6 gene variants. The green bands are

the exons. Red are InSiGHT variants, where triangles represent class 5, circles class 1, and plusses class

2-4. The black circles are variants seen in 1000 Genomes[63], blue circles are seen in the Genome of the

Netherlands[243, 244]. The gray dots represent all potential SNVs.
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Figure 5.7: CADD scaled C-scores vs. genomic coordinates for PMS2 gene variants. The green bands are

the exons. Red are InSiGHT variants, where triangles represent class 5, circles class 1, and plusses class

2-4. The black circles are variants seen in 1000 Genomes[63], blue circles are seen in the Genome of the

Netherlands[243, 244]. The gray dots represent all potential SNVs.
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Figure 5.8: Primary SnpEff effect prediction vs. CADD scaled C-score, with InSiGHT classifications colored.

1
2

6



1

2

3

4

5

6

7

8

5.4. DISCUSSION

Gene Variant AA ch. Previous[337] Here

MLH1 c.1037A>G Q346R 0.95 0.99

MLH1 c.109G>A E37K 0.87 0.99

MLH1 c.112A>G N38D 0.94 0.99

MLH1 c.125C>T A42V 0.96 0.99

MLH1 c.184C>A Q62K 0.88 0.99

MLH1 c.1918C>T P640S 0.82 0.99

MLH1 c.1919C>T P640L 0.93 0.99

MLH1 c.304G>A E102K 0.87 0.99

MLH1 c.307G>C A103P 0.97 0.99

MLH1 c.331G>C A111P 0.97 0.99

MLH1 c.347C>A T116K 0.93 0.99

MLH1 c.65G>C G22A 0.89 0.99

MLH1 c.67G>A E23K 0.86 0.99

MLH1 c.74T>C I25T 0.86 0.99

MLH1 c.80G>C R27P 0.97 0.99

MLH1 c.925C>T P309S 0.83 0.99

MSH2 c.1799C>T A600V 0.96 0.99

MSH2 c.1826C>T A609V 0.96 0.99

MSH2 c.2064G>A M688I 0.89 0.99

MSH2 c.2141C>T A714V 0.87 0.99

MSH2 c.2168C>T S723F 0.88 0.99

MSH2 c.2187G>T M729I 0.88 0.99

MSH2 c.529G>A E177K 0.86 0.99

MSH6 c.3682G>C A1228P 0.97 0.99

Table 5.5: The 24 variants that are still uncertain and predicted by bioin-

formatic tools to be likely pathogenic, according to the probabilities of the

MAPP + PolyPhen2 calibrated model[337] and the CADD model.
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Abstract

We present Gene-Aware Variant INterpretation (GAVIN), a new method

that accurately classifies variants for clinical diagnostic purposes. Clas-

sifications are based on gene-specific calibrations of allele frequencies

from the ExAC database, likely variant impact using SnpEff, and esti-

mated deleteriousness based on CADD scores for >3,000 genes. In a

benchmark on 18 clinical gene sets, we achieve a sensitivity of 91.4%

and a specificity of 76.9%. This accuracy is unmatched by 12 other

tools. We provide GAVIN as an online MOLGENIS service to annotate

VCF files and as an open source executable for use in bioinformatic

pipelines. It can be found at http://molgenis.org/gavin.

Keywords: Clinical next-generation sequencing, Variant classification,

Automated protocol, Gene-specific calibration, Allele frequency, Protein

impact, Pathogenicity prediction

130

http://molgenis.org/gavin


1

2

3

4

5

6

7

8

6.1. BACKGROUND

6.1 Background

Only a few years ago, the high costs and technological challenges of

whole exome and whole genome sequencing were limiting their appli-

cation. Today, the practice of human genome sequencing has become

routine even within the healthcare sector. This is leading to new and

daunting challenges for clinical and laboratory geneticists[29]. Inter-

preting the thousands of variations observed in DNA and determining

which are pathogenic and which are benign is still difficult and time-

consuming, even when variants are prioritized by state-of-the-art in sil-

ico prediction tools and heuristic filters[68]. Using the current, largely

manual, variant classification protocols, it is not feasible to assess the

thousands of genomes per year now produced in a single hospital. It

is the challenge of variant assessment which now impedes the effective

uptake of next-generation sequencing into routine medical practice.

The recently introduced CADD[185] scores are a promising alter-

native[347]. These are calculated on the output of multiple in silico

tools in combination with other genomic features. They trained a com-

puter model on variants that have either been under long-term selective

evolutionary pressure or none at all. The result was an estimation of

deleteriousness for variants in the human genome, whether already ob-

served or not. It has been shown to be a strong and versatile predictor

for pathogenicity[185] with applications and popular uptake in many

areas of genome research. Variant interpretation in a diagnostic set-

ting may also benefit from this method. However, succesful uptake

requires a translational effort because CADD scores are intended to

rank variants, whereas NGS diagnostics requires a discrete classifica-

tion for each variant. For example, SIFT[187] probabilities are used

to partition ‘tolerated’ (probability >0.05) from ‘damaging’ variants

(probability ≤0.05). CADD scores may be used to define such a binary

classifier, but using a single, arbitrary cut-off value is not recommended

by the CADD authors[46]. Moreover, clinicians and laboratories can-

not rely on a single threshold approach because it has been shown that
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CHAPTER 6. VARIANT INTERPRETATION FOR MEDICAL SEQ.

individual genes differ in their cut-off thresholds for what should be con-

sidered the optimal boundary between pathogenic or benign[347]. This

issue has been partly addressed by mutation significance cutoff (MSC)

[164], which provides gene-based CADD cut-off values to remove in-

consequential variants safely from sequencing data. While MSC aims

to quickly and reliably reduce the number of benign variants left to

interpret, it was not developed to detect/classify pathogenic variants.

The challenge is thus to find robust algorithms that classify both

pathogenic and benign variants accurately and that fit into existing best

practice, diagnostic filtering protocols[288]. Implementing such tools is

not trivial because genes have different levels of tolerance to various

classes of variants that may be considered harmful[196]. In addition,

the pathogenicity estimates for benign variants are intrinsically lower

because these are more common and of less severe consequence on

protein transcription. Comparing the prediction score distributions of

pathogenic variants with those of typical benign variants is therefore

biased and questionable. Using such an approach means it will be un-

clear how well a predictor truly performs if a benign variant shares the

same allele frequency and consequence with known pathogenic vari-

ants. Here, we present Gene-Aware Variant Interpretation (GAVIN), a

new method that addresses these issues by gene-specific calibrations on

closely matched sets of variants. GAVIN delivers accurate and reliable

automated classification of variants for clinical application.

6.2 Results

6.2.1 Development of GAVIN

GAVIN classifies variants as benign, pathogenic or a variant of uncer-

tain significance (VUS). It considers ExAC[196] minor allele frequency,

SnpEff[60] impact and CADD score using gene-specific thresholds. For

each gene, we ascertained ExAC allele frequencies and effect impact

distributions of variants described in ClinVar (November 2015 release)
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[191] as pathogenic or likely pathogenic. From the same genes we

selected ExAC variants that were not present in ClinVar as a benign

reference set. We stratified this benign set to match the pathogenic set

with respect to the effect impact distribution and minor allele frequen-

cies (MAFs). Using these comparable variant sets we calculated gene-

specific mean values for CADD scores (across all genes, the pathogenic

mean of means was 28.44 and that of benign 23.08) and MAFs, as

well as 95th percentile sensitivity/specificity CADD thresholds for both

benign and pathogenic variants. Of 3,237 genes that underwent the

calibration process, we found 2,525 informative gene calibrations, i.e.

thresholds for CADD, effect impact, pathogenic 95th percentile MAFs

or a combination thereof (see Additional file 1: Table S1). We used

fixed genome-wide classification thresholds as a fall-back strategy based

on CADD scores < 15 for benign, > 15 for pathogenic and on a MAF

threshold of 0.00426, which was the mean of all gene-specific pathogenic

95th percentile MAFs. This allowed classification when insufficient vari-

ant training data were available to allow for gene-specific calibrations,

or when the gene-specific rules failed to classify a variant. Based on

the gene calibrations we then implemented GAVIN, which can be used

online or via commandline (see http://molgenis.org/gavin) to

perform variant classification.

6.2.2 Performance benchmark

To test the robustness of GAVIN, we evaluated its performance using

six benchmark variant classification sets from VariBench[239], Muta-

tionTaster2[304], ClinVar (only recently added variants that were not

used for calibrating GAVIN), and a high-quality variant classification

list from the University Medical Center Groningen (UMCG) genome

diagnostics laboratory. These sets and the origins of their variants

and classifications are described in Table 6.1. The combined set com-

prises 25,765 variants (17,063 benign, 8,702 pathogenic). All variants

were annotated by SnpEff, ExAC and CADD prior to classification
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by GAVIN. To assess the clinical relevance of our method, we strat-

ified the combined set into clinically relevant variant subsets based

on organ-system specific genes. We formed 18 subset panels such

as Cardiovascular, Dermatologic, and Oncologic based on the gene-

associated physical manifestation categories from Clinical Genomics

Database[319]. A total of 11,679 out of 25,765 variants were not linked

to clinically characterized genes and formed a separate panel (see Table

6.2 for an overview, which includes the number of pathogenic variants

in each panel). In addition, we assessed the performance of GAVIN

in comparison to 12 common in silico tools for pathogenicity predic-

tion: MSC (using two different settings), CADD (using three differ-

ent thresholds), SIFT[187], PolyPhen2[5], PROVEAN[59], Condel[129],

PON-P2[241], PredictSNP2[28], FATHMM-MKL[308], GWAVA[289],

FunSeq[112] and DANN[278].

Across all test sets, GAVIN achieved a median sensitivity of 91.4%

and a median specificity of 76.9%. Other tools with >90% sensitivity

were CADD (93.6% at threshold 15, with specificity 57.1%, and 90.4%

at threshold 20, with specificity 68.8%) and MSC (97.1%, specificity

25.7%). The only tool with a higher specificity was CADD at threshold

25 (85.3%, sensitivity 71.5%). See Table 6.3 for an overview of tool

performance or Figure 6.1 for more detail. In all the clinical gene sets

GAVIN scored >89.7% sensitivity, including >92% for Cardiovascular,

Biochemical, Obstetric, Neurologic, Hematologic, Endocrine and Der-

matologic genes. The non-clinical genes scored 71.3%. The specificity

in clinical subsets ranged from 70.3% for Endocrine to 84.2% for Den-

tal. Non-clinical gene variants were predicted at 70.6% specificity. See

Additional file 2: Table S2 for detailed results.

6.2.3 Added value of gene-specific calibration

We then investigated the added value of using gene-specific thresholds

on classification performance relative to using genome-wide thresholds.

We bootstrapped the performance on 10,000 random samples of 100
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6.2. RESULTS

Dataset Be-

nign

vari-

ants

(n)

Patho-

genic

vari-

ants

(n)

Origin

VariBench

tolerance DS7,

training set

11,347 6,143 PhenCode database, IDbases,

and 18 individual LSDBs

VariBench

tolerance DS7,

test set

1,377 510 PhenCode database, IDbases,

and 18 individual LSDBs

MutationTaster2

benchmark set

1,194 161 HGMD Professional and 1000

Genomes

ClinVar (additions

of Nov 2015 to

Feb 2016)

1,668 1,688 Submissions by clinical

molecular geneticists, expert

panels, diagnostic laboratories

and companies

UMCG, variants

exported from

clinical diagnostic

interpretation

software

1,176 174 Clinical diagnostic

classifications of variants in

cardiology, dermatology,

epilepsy, dystonia and

preconception screening

UMCG, germline

variants for

familial cancer

cases

301 26 Hereditary cancer variant

classifications by an M.D.

following ACMG guidelines

Total 17,063 8,702 25,765

Table 6.1: Variant and classification origins of the benchmark data sets used.
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CGD manifestation

panel

Genes

(n)

Vari-

ants

(n)

Likely

pathogenic/pathogenic

variants (n)

Allergy /

Immunology /

Infectious

253 1,952 1,324

Audiologic /

Otolaryngologic

217 1,215 668

Biochemical 354 2,538 1,933

Cardiovascular 446 4,360 2,408

Craniofacial 387 1,861 1,106

Dental 80 783 518

Dermatologic 345 2,749 1,662

Endocrine 240 1,801 1,340

Gastrointestinal 338 2,351 1,620

Genitourinary 149 1,026 753

Hematologic 267 2,571 1,914

Musculoskeletal 676 4,935 2,864

Neurologic 1,012 6,363 4,055

Obstetric 34 223 140

Oncologic 203 2,157 1,207

Ophthalmologic 479 3,649 2,406

Pulmonary 90 717 485

Renal 302 2,143 1,459

NotInCGD 5,806 11,679 122

Table 6.2: Stratification of the combined variant data set into manifestation

categories. The categories are defined by Clinical Genomics Database and

are associated to clinically relevant genes. Variants were allocated to the

manifestation categories based on their gene and were placed in multiple

categories if a gene was associated to multiple manifestations.
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Tool Median sensitivity

(%)

Median specificity

(%)

CADD (thr. 15) 93.6 57.1

CADD (thr. 20) 90.4 68.8

CADD (thr. 25) 71.5 85.3

Condel 70.3 39.5

DANN 63.8 66.7

FATHMM 69.5 61.9

FunSeq 61.7 50.2

GAVIN 91.4 76.9

GWAVA 47.6 26.2

MSC ClinVar95CI 84.7 64.4

MSC HGMD99CI 97.1 25.7

PolyPhen2 68.0 46.8

PONP2 47.5 26.9

PredictSNP2 66.8 70.6

PROVEAN 65.9 62.1

SIFT 67.9 57.9

Table 6.3: Performance overview of all tested tools.
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Figure 6.1: Performance of GAVIN and other tools across different clinical

gene sets. Prediction quality is measured as sensitivity and specificity, i.e.

the fraction of pathogenic variants correctly identified and the fraction of

misclassifications/non-classifications while doing so.
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6.3. DISCUSSION

benign and 100 pathogenic variants. These variants were drawn from

the three groups of genes described in ”Methods”: (1) genes for which

CADD was significantly predictive for pathogenicity (n = 681); (2)

genes where CADD was not significantly predictive (n = 732); and (3)

genes with scarce variant data available for calibration (n = 774). For

each of these sets we compared the use of gene-specific CADD and

MAF classification thresholds with that of genome-wide filtering rules.

We observed the highest accuracy on genes for which CADD had sig-

nificant predictive value and for the gene-specific classification method

(median accuracy = 87.5%); this was significantly higher than using

the genome-wide method for these same genes (median accuracy =

84.5%, Mann-Whitney U test p value < 2.2e-16). For genes for which

CADD had less predictive value we found a lower overall performance,

but still reached a significantly better result using the gene-specific ap-

proach (median accuracy = 84.5% versus genome-wide 82.5%, p value

< 2.2e-16). Lastly, the worst performance was seen for variants in

genes with scarce training data available. The gene-specific perfor-

mance, however, was still significantly better than using genome-wide

thresholds (median accuracy = 82.5% and 80.5% respectively, p value

= 2.2e-16). See Figure 6.2.

6.3 Discussion

We have developed GAVIN, a method for automated variant classifica-

tion using gene-specific calibration of classification thresholds for benign

and pathogenic variants.

Our results show that GAVIN is a powerful classifier with consis-

tently high performance in clinically relevant genes. The robustness of

our method arises from a calibration strategy that first corrects for cal-

ibration bias between benign and pathogenic variants, in terms of con-

sequence and rarity, before calculating the classification thresholds. A

comprehensive benchmark demonstrates a unique combination of high
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6.3. DISCUSSION

sensitivity (>90%) and high specificity (>70%) for variants in genes

related to different organ systems. This is a significant improvement

over existing tools that tend to achieve either a high sensitivity (MSC,

CADD at lower thresholds) or a high specificity (PredictSNP2, CADD

at higher thresholds). A high sensitivity is crucial for clinical interpre-

tation because pathogenic variants should not be falsely discarded. In

addition, having a higher specificity means that the results will be far

less ”polluted” with false positives and thus less risk of patients being

given a wrong molecular diagnosis. GAVIN decreases false positives by

10-20% compared to using CADD for the same purpose, thereby re-

ducing interpretation time. The difference between using a high and

low performance method can be dramatic in practice. In a hypothetical

example, GAVIN would make downstream variant interpretation twice

as effective as a low performance method, with more sensitive detection

of pathogenic variants (see Table 6.4).

Even though an optimal combination of sensitivity and specificity

may be favorable in general terms, there may still be a need for tools

that perform differently. The MSC gene-specific thresholds based on

HGMD[323] at 99% confidence interval show a very high sensitivity

(97.1%), but at the expense of a very low specificity (25.7%). Such

low specificity thresholds will pick up almost all the pathogenic variants

with scores exceeding gene thresholds. This allows safe removal (<3%

error) of benign variants that fall below these thresholds, which was their

authors’ aim. However, this tool cannot detect pathogenic variants due

its low specificity. Other tools, such as PON-P2, may show a relatively

low performance, but not necessarily because of true errors. Such tools

may simply be very ‘picky’ and only return a classification when the

verdict carries high confidence. If we ignore the variants that PON-P2

did not classify (52% of total benchmark variants) and only consider

how many of the variants that it did classify were correct, we find

a positive predictive value of 96% and a negative predictive value of

94%. Thus, while this tool might not be useful for exome screening

because too many pathogenic variants would be lost, it can still be an
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Hypothetical data

set

90% sensitive

method

70% sensitive

method

100 benign variants 9 pathogenic found 7 pathogenic found

10 pathogenic

variants

1 pathogenic missed 3 pathogenic missed

80% specific

method

9+20 = 29 variants

to interpret

7+20 = 27 variants

to interpret

80 benign found,

20 benign missed

9/29 = 31% positive

predictive value

7/27 = 26% positive

predictive value

60% specific

method

9+40 = 49 variants

to interpret

7 + 40 = 47

variants to interpret

60 benign found,

40 benign missed

9/49 = 18% positive

predictive value

7/47 = 15% positive

predictive value

Table 6.4: Estimate of the practical impact in clinical diagnostics of using

methods of different sensitivity and specificity on a data set with 100 benign

and 10 pathogenic variants.
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6.3. DISCUSSION

excellent choice for further investigation of interesting variants. We

would therefore emphasize that appropriate tools should be selected

depending on the question or analysis protocol used and by taking their

strengths and weaknesses into account.

Not surprisingly, we could confirm that the use of gene-specific

thresholds instead of genome-wide thresholds led to a consistent and

significant improvement of classification performance. This shows the

added value of our strategy. Overall performance was slightly lower in

genes for which CADD has limited predictive value and even lower in

genes with few ”gold standard” pathogenicity data available. Evalu-

ating variants in uncharacterized genes is rare in clinical diagnostics,

although it may occur when exome sequencing is aimed at solving com-

plex phenotypes or undiagnosed cases. Nevertheless, GAVIN is likely to

improve continuously in an increasing number of genes, propelled by the

speed at which pathogenic variants are now being reported. The results

of this paper are based on the ClinVar release of November 2015 and

comprise 2,525 informative gene calibrations, i.e. thresholds for CADD,

impact, MAF or a combination thereof. When we calibrate on the

September 2016 ClinVar release, we obtain more informative gene cali-

brations (2,770) with stable gene CADD thresholds (mean pathogenic

difference of 0.1%, mean benign difference of 1.1%) and a slight drop in

pathogenic MAF (0.00426 to 0.00346). Using these newer calibrations,

the benchmark performance of GAVIN increases to 91.7% sensitivity

(up from 91.4%) and 78.2% specificity (up from 76.9%). If this trend

continues and (2770-2525)/10 = 24.5 genes per month are added, we

estimate that calibrating all disease genes in CGD (3,316 per Sept.

2016) will take another (3316-2770)/24.5/12 = 1.86 ≈ 2 years.

With GAVIN, we were also able to demonstrate the residual power of

CADD scores as a predictor for pathogenicity on a gene-by-gene basis,

revealing that the scores are informative for many genes (these results

can be accessed at http://molgenis.org/gavin). There are

several possible explanations for potential non-informativity of CADD

scores. It may have bias towards the in silico tools and sources it was
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trained on, limiting their predictiveness for certain genomic regions or

disease mechanisms[222]. Furthermore, calibration of pathogenic vari-

ants could be difficult in genes with high damage tolerance, i.e. having

many missense or loss-of-function mutations[165]. In addition, cali-

bration may be impaired by false input signals, such as an incorrect

pathogenic classification in ClinVar or inclusion of disease cohorts in

large databases such as ExAC could misrepresent allele frequencies[320].

Lastly, pathogenic variants could have a low penetrance or their effect

mitigated by genetic modifiers, causing high deleteriousness to be tol-

erated in the general population against expectations[66].

The field of clinical genomics is now moving towards interpretation

of non-coding disease variants (NCVs) identified by WGS [385]. A num-

ber of recently introduced metrics, including EIGEN[160], FATHMM-

MKL, DeepSEA[387], and GWAVA, specialize in predicting the func-

tional effects of non-coding sequence variation. When a pathogenic

NCV reference set of reasonable quantity becomes available, a calibra-

tion strategy as described here will be essential to be able to use these

metrics effectively in whole-genome diagnostics.

6.4 Conclusions

GAVIN provides an automated decision-support protocol for classifying

variants, which will continue to improve in scope and precision as more

data is publicly shared by genome diagnostic laboratories. Our approach

bridges the gap between estimates of genome-wide and population-wide

variant pathogenicity and contributes to their practical usefulness for

interpreting clinical variants in specific patient populations. Databases

such as ClinVar contain a wealth of implicit rules now used manually by

human experts to classify variants. Rules on minor allele frequencies,

estimated effect impact and CADD scores are deduced and employed

by GAVIN to classify variants that have not been seen before.

We envision GAVIN accelerating NGS diagnostics and becoming par-
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ticularly beneficial as a powerful (clinical) exome screening tool. It can

be used to quickly and effectively detect over 90% of pathogenic variants

in a given data set and to present these results with an unprecedented

small number of false positives. It may especially serve laboratories

that lack the resources necessary to perform reliable and large-scale

manual variant interpretation for their patients and spur the develop-

ment of more advanced gene-specific classification methods. We pro-

vide GAVIN as an online MOLGENIS[328] web service to browse gene

calibration results and annotate VCF files and as a commandline exe-

cutable including open source code for use in bioinformatic pipelines.

GAVIN can be found at http://molgenis.org/gavin.

6.5 Methods

6.5.1 Calibration of gene-specific thresholds

We downloaded ClinVar (variant summary.txt.gz from ClinVar FTP, last

modified date: 05/11/15) and selected GRCh37 variants that contained

the word “pathogenic” in their clinical significance. These variants were

matched against the ClinVar VCF release (clinvar.vcf.gz, last modified

date: 01/10/15) using RS (Reference SNP) identifiers in order to re-

solve missing indel notations. On the resulting VCF, we ran SnpEff

version 4.1 L with these settings: hg19 -noStats -noLog -lof -canon -ud

0. As a benign reference set, we selected variants from ExAC (release

0.3, all sites) from the same genic regions with +/- 100 bases of padding

on each side to capture more variants residing on the same exon. We

first determined the thresholds for gene-specific pathogenic allele fre-

quency by taking the ExAC allele frequency of each pathogenic variant,

or assigning zero if the variant was not present in ExAC, and calculating

the 95th percentile value per gene using the R7 method from Apache

Commons Math version 3.5. We filtered the set of benign variants with

this threshold to retain only variants that were rare enough to fall into

the pathogenic frequency range.
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Following this step, the pathogenic impact distribution was calcu-

lated as the relative proportion of the generalized effect impact cate-

gories, as annotated by SnpEff on the pathogenic variants. The same

calculation was performed on the benign variants uniquely present in

ExaC. To facilitate this, we annotated ExAC with SnpEff (4.1 L, same

settings as above) to get the same impact, transcript and gene nomen-

clature as our ClinVar set. Overlapping genes were not an issue be-

cause SnpEff variant annotations include the gene symbol to which an

estimated impact is applicable and subsequently only those matching

impacts were considered. The benign variants were subsequently down-

sized to match the impact distribution of the pathogenic variants.

For instance, in the case of 407 pathogenic MYH7 variants, we

found a pathogenic allele frequency threshold of 4.942e-5, and an im-

pact distribution of 5.41% HIGH, 77.4% MODERATE, 17.2% LOW

and 0% MODIFIER. We defined a matching set of benign variants by

retrieving 1,799 MYH7 variants from ExAC (impact distribution: 2%

HIGH, 23.59% MODERATE, 32.59% LOW, 41.82% MODIFIER), from

which we excluded known ClinVar pathogenic variants (n = 99), variants

above the AF threshold (n = 246), and removed interspersed variants

using a non-random ‘step over’ algorithm until the impact distribution

was equalized (n = 960). We thus reached an equalized benign set

of 494 variants, having an impact distribution of 5.47% HIGH, 77.33%

MODERATE, 17.21% LOW and 0% MODIFIER).

We then obtained the CADD scores for all variants and tested

whether there was a significant difference in scores between the sets of

pathogenic and benign variants for each gene, using a Mann-Whitney

U test. Per gene we determined the mean CADD score for each group

and also the 95th percentile sensitivity threshold (detection of most

pathogenic variants while accepting false positives) and 95th percentile

specificity threshold (detection of most benign variants while accepting

false negatives), using the Percentile R7 function. All statistics were

done with Apache Commons Math version 3.5. This calibration pro-

cess was repeated for 3,237 genes, resulting in 2,525 genes for which
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we learned classification rules involving pathogenic variant MAF, effect

impact distribution, CADD score thresholds, or a combination thereof.

On average, CADD scores were informative of pathogenicity. The

mean benign variant CADD score across all genes was 23.08, while the

mean pathogenic variant CADD score was 28.44, a mean difference of

5.36 (σ = 4.80). Of 3,237 genes that underwent the calibration pro-

cess, we found 681 “CADD predictive” genes that had a significantly

higher CADD score for pathogenic variants than for benign variants

(Mann-Whitney U test, p value <0.05). Interestingly, we also found

732 “CADD less predictive” genes, for which there was no proven dif-

ference between benign and pathogenic variants (p value >0.05 despite

having ≥ 5 pathogenic and ≥ 5 benign variants in the gene). For 774

genes there was very little calibration data available (<5 pathogenic

or <5 benign variants), resulting in no significant difference (p value

>0.05) between CADD scores of pathogenic and benign variants. We

also found 159 genes for which effect impact alone was predictive, mean-

ing that a certain impact category was unique for pathogenic variants

compared to benign variants. For instance, if we observe HIGH im-

pact pathogenic variants (frame shift, stopgain, etc.) for a given gene,

whereas benign variants only reach MODERATE impact (missense, in-

frame insertion, etc.), we use this criterion as a direct classifier. No

further CADD calibration was performed on these genes. In summary,

the total set of 3,237 genes comprises 681 “CADD predictive” genes +

732 “CADD less predictive” genes + 774 “little calibration data” genes

+ 159 “impact predictive” + 178 genes with only pathogenic MAF

calibrated + 712 genes without calibration due to less than 2 ClinVar

or ExAC variants available + 1 artifact where population CADD was

greater than pathogenic CADD. See Additional file 1: Table S1 for

details.
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6.5.2 Variant sets for benchmarking

We obtained six variant sets that had been classified by human experts.

These data sets were used to benchmark the in silico variant pathogenic-

ity prediction tools mentioned in this paper. Variants from the original

sets may sometimes be lost due to conversion of cDNA/HGVS notation

to VCF.

The VariBench protein tolerance data set 7 (http://structure

.bmc.lu.se/VariBench/) contains disease-causing missense vari-

ations from the PhenCode[123] database, IDbases[266], and 18 individ-

ual LSDBs[239]. The training set we used contained 17,490 variants,

of which 11,347 were benign and 6,143 pathogenic. The test set con-

tained 1,887 variants, of which 1,377 were benign and 510 pathogenic.

We used both the training set and test set as benchmarking sets.

The MutationTaster2[304] test set contains known disease muta-

tions from HGMD[323] Professional and putatively harmless polymor-

phisms from 1000 Genomes. It is available at http://www.mutatio

ntaster.org/info/Comparison_20130328_with_results

_ClinVar.html. This set contains 1,355 variants, of which 1,194

are benign and 161 pathogenic.

We selected 1,688 pathogenic variants from ClinVar that were added

between November 2015 and February 2016 as an additional bench-

marking set, since our method was based on the November 2015 release

of ClinVar. We supplemented this set with a random selection of 1,668

benign variants from ClinVar, yielding a total of 3,356 variants.

We obtained an in-house list of 2,359 variants that had been classi-

fied by molecular and clinical geneticists at the University Medical Cen-

ter Groningen. These variants belong to patients seen in the context of

various disorders: cardiomyopathies, epilepsy, dystonia, preconception

carrier screening, and dermatology. Variants were analyzed according

to Dutch medical center guidelines[242] for variant interpretation, using

Cartagenia Bench LabTM (Agilent Technologies) and Alamut R© soft-

ware (Interactive Biosoftware) by evaluating in-house databases, known
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population databases (1000G[18], ExAC, ESP6500 at http://evs.

gs.washington.edu/EVS/, GoNL[244]), functional effect and lit-

erature searches. Any ClinVar variants included in the November 2015

release were removed from this set to prevent circular reasoning, result-

ing in a total of 1,512 variants, with 1,176 benign/likely benign (merged

as Benign), 162 VUS, and 174 pathogenic/likely pathogenic (merged

as Pathogenic).

From the UMCG diagnostics laboratory we also obtained a list of 607

variants seen in the context of familial cancers. These were interpreted

by a medical doctor according to ACMG guidelines[288]. We removed

any ClinVar variants (November 2015 release), resulting in 395 variants,

with 301 benign/likely benign (merged as Benign), 68 VUS and 26 likely

pathogenic/pathogenic (merged as Pathogenic).

6.5.3 Variant data processing and preparation

We used Ensembl VEP (http://grch37.ensembl.org/Homo_

sapiens/Tools/VEP/) to convert cDNA/HGVS notations to VCF

format. Newly introduced N-notated reference bases were replaced with

the appropriate GRCh37 base, and alleles were trimmed where needed

(e.g. “TA/TTA” to “T/TT”). We annotated with SnpEff (version

4.2) using the following settings: hg19 -noStats -noLog -lof -canon -

ud 0. CADD scores (version 1.3) were added by running the variants

through the CADD webservice (available at http://cadd.gs.was

hington.edu/score). ExAC (release 0.3) allele frequencies were

added with MOLGENIS annotator (release 1.16.2). We also merged

all benchmarking sets into a combined file with 25,995 variants (of

which 25,765 classified as benign, likely benign, likely pathogenic or

pathogenic) for submission to various online in silico prediction tools.
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6.5.4 Execution of in silico predictors

The combined set of 25,765 variants was classified by the in silico variant

pathogenicity predictors (MSC, CADD, SIFT, PolyPhen2, PROVEAN,

Condel, PON-P2, PredictSNP2, FATHMM, GWAVA, FunSeq, DANN).

The output of each tool was loaded into a program that compared the

observed output to the expected classification and which then calculated

performance metrics such as sensitivity and specificity. The tools that

we evaluated and the web addresses used can be found in Table 6.5. We

executed PROVEAN and SIFT, for which the output was reduced by

retaining the following columns: “INPUT”, “PROVEAN PREDICTION

(cut-off = -2.5)” and “SIFT PREDICTION (cut-off = 0.05)”. For

PONP-2, the output was left as-is. The Mutation Significance Cutoff

(MSC) thresholds are configurable; we downloaded the ClinVar-based

thresholds for CADD 1.3 at 95% confidence interval, comparable to our

method, as well as HGMD-based thresholds at 99% confidence inter-

val, the default setting. Variants below the gene-specific thresholds were

considered benign, and above the threshold pathogenic. Following the

suggestion of the CADD authors, scores of variants below a threshold

of 15 were considered benign, above this threshold pathogenic. We also

tested CADD thresholds 20 and 25 for comparison. The output of Con-

del was reduced by retaining the following columns: “CHR”, ”START”,

”SYMBOL”, ”REF”, ”ALT”, ”MA”, ”FATHMM”, ”CONDEL”, ”CON-

DEL LABEL”. After running PolyPhen2, its output was reduced by

retaining the positional information (“chr2:220285283—CG”) and the

“prediction” column. Finally, we executed PredictSNP2, which contains

the output from multiple tools. From the output VCF, we used the

INFO fields “PSNPE”, “FATE”, “GWAVAE”, “DANNE” and “FUNE”

for the pathogenicity estimation outcomes according to the PredictSNP

protocol for PredictSNP2 consensus, FATHMM, GWAVA, DANN and

FunSeq, respectively.
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Tool Used via web address

MSC http://pec630.rockefeller.edu/MSC/

CADD http://cadd.gs.washington.edu/

SIFT http://provean.jcvi.org/index.php

PolyPhen2 http://genetics.bwh.harvard.edu/pph2

/

PROVEAN http://provean.jcvi.org/index.php

Condel http://bg.upf.edu/fannsdb/query/cond

el

PON-P2 http://structure.bmc.lu.se/PON-P2/

PredictSNP2 http://loschmidt.chemi.muni.cz/predictsnp2/

FATHMM http://loschmidt.chemi.muni.cz/predictsnp2/

GWAVA http://loschmidt.chemi.muni.cz/predictsnp2/

FunSeq http://loschmidt.chemi.muni.cz/predictsnp2/

DANN http://loschmidt.chemi.muni.cz/predictsnp2/

Table 6.5: The tools used to evaluate our benchmark variant set and the

web addresses used through which they were accessed.
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6.5.5 Stratification of variants using Clinical Genomics
Database

We downloaded Clinical Genomics Database (CGD; the .tsv.gz version

on 1 June 2016 from http://research.nhgri.nih.gov/CGD

/download/). A Java program evaluated each variant in the full

set of 25,765 variants and retrieved their associate gene symbols as

annotated by SnpEff. We matched the gene symbols to the genes

present in CGD and retrieved the corresponding physical manifestation

categories. Variants were then written out to separate files for each

manifestation category (cardiovascular, craniofacial, renal, etc.). This

means a variant may be output into multiple files if its gene was linked

to multiple manifestation categories. However, we did prevent variants

from being written out twice to the same file in the case of overlapping

genes in the same manifestation categories. We output a variant into

the “NotInCGD” file only if it was not located in any gene present in

CGD.

6.5.6 Implementation

GAVIN was implemented using Java 1.8 and MOLGENIS[328] 1.21 (h

ttp://molgenis.org). The calibration method is agnostic of the

meaning of pathogenic or benign, resulting in thresholds that have bal-

anced sensitivity and specificity. In our diagnostics practice, sensitivity

is valued over specificity. We therefore adjusted the CADD and MAF

thresholds to shift the balance towards sensitivity at the cost of speci-

ficity. We found a setting of 5 (adjustable in source code) achieved

>90% sensitivity and this setting was used to generate final thresholds.

The genome-wide classification thresholds based on CADD scores < 15

for benign and > 15 for pathogenic matched this high sensitivity. The

full table of gene-specific thresholds used can be found at http://w

ww.molgenis.org/gavin (for latest release) or Additional file 1:

Table S1. They can be used to guide manual variant interpretation or
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be re-used in other tools. Source code with tool implementation details

can be found at https://github.com/molgenis/gavin. All

benchmarking, bootstrapping and plotting tools can be found in this

repository, as well as all data processing and calibration programs.

6.5.7 Binary classification metrics

Prediction tools may classify variants as benign or pathogenic, but may

also fail to reach a classification or classify a variant as VUS. Because

of these three outcome states, binary classification metrics must be

used with caution. We define sensitivity as the number of detected

pathogenic variants (true positives) over the total number of pathogenic

variants, which includes true positives, false negatives (pathogenic vari-

ants misclassified as benign), and pathogenic variants that were other-

wise ”missed”, i.e. classified as VUS or not classified at all. Therefore,

Sensitivity = TruePositive/(TruePositive + FalseNegative + MissedPos-

itive). We applied the same definition for specificity and define it as:

Specificity = TrueNegative/(TrueNegative + FalsePositive + Missed-

Negative). Following this line, accuracy is then defined as (TruePosi-

tive + TrueNegative)/(TruePositive + TrueNegative + FalsePositive +

FalseNegative + MissedPositive + MissedNegative).

Additional files

Additional file 1: Table S1. GAVIN gene-specific thresholds used

in the benchmark. This table can be used to look up thresholds of

individual genes and allow variant interpretation by following classifica-

tion rules as indicated by the column names and provided explanation.

(XLSX 198 kb) [available online at genomebiology.biomedcent

ral.com]

Additional file 2: Table S2. Detailed overview of all benchmark re-

sults. Each combination of tool and dataset is listed. We provide the

raw counts of true positives (TP), true negatives (TN), false positives
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(FP), and false negatives (FN), as well as of pathogenic and benign

variants that were ”missed”, i.e. not correctly identified as such. From

these numbers, we calculated the sensitivity and specificity. (XLSX 58

kb) [available online at genomebiology.biomedcentral.com]

Additional file 3: Table S3. Included in this chapter as Table 6.4

Additional file 4: Table S4. Included in this chapter as Table 6.5
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Abstract

With the popularity of next-generation sequencing rising, we expect

thousands of individuals to soon have whole-genome profiling. How-

ever, implementation is a huge challenge for both genome research and

diagnostic applications, with the primary roadblock not data acquisition

or variant calling, but downstream interpretation.

Interpretation can be sped up using the huge amount of useful infor-

mation collected by laboratories, public databases and biobanks. Unfor-

tunately, for now, all these sources of useful data cannot be easily inte-

grated and explored in unison. Further, while many innovative analysis

methods emerge from research on a regular basis, a lack of standard-

ization makes it difficult to adopt, share, compare and validate them in

practice.

Here we report a lightweight framework for genome interpretation

pipelines that aims to enable rapid implementation and adaptation of

analysis protocols that integrate reference annotation data (e.g. Clin-

Var, ExAC, GoNL), run best-practice analysis tools (e.g. VAAST or
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GAVIN), capture their outputs in a standardized way using a new VCF

extension, and use those outputs to generate informative, customizable

reports for human interpretation. Clear definitions of tools and stan-

dardization of outputs enable interoperability/flexibility and encourage

members of the genomics community to jointly develop and reuse frame-

work components in order to rapidly integrate new data and methods

and develop and share new best practice protocols. Standardized val-

idation and benchmarking enables rapid testing and uptake of these

developments. We used MOLGENIS open source for its implementa-

tion but the framework can be readily added in other software.

Implementation of this framework in a genome diagnostic setting

shows that we can successfully translate the latest knowledge and meth-

ods to medical practice. However, we also envision its usage for differ-

ent types of genomic studies because the framework is straightforward

and offers advantages in terms of storing and sharing results. Software

downloads, manuals and source code can be found at www.molgeni

s.org/genomics.

7.1 Introduction

Sequencing of DNA and RNA has become pivotal in modern life science

research, and we can now exploit our understanding of the genome to

develop molecular diagnostic tests for many disorders. However, when

it comes to making more discoveries in research, there is still a need

for better data integration[290] in order to discover new disease genes.

At the same time, in genome diagnostics, an increasing number of

patients expect a reliable molecular diagnosis based on their complete

genome[29] while diagnostic yield is still highly variable[356, 221, 74,

380].

To improve the situation, we can utilize a rapidly growing list of rel-

evant methods, data and knowledge tools. Unfortunately, sharing and

uptake of these new analysis resources is difficult because it takes con-
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siderable effort to investigate, adapt and validate them into diagnostic

or research protocols. This is partly because the quality and reusabil-

ity of academic software remains low[274] while commercial software

prefers to incorporate widely used methods that lag behind innovation.

As a result, institutes develop their own interpretation strategies, with

varying degrees of success[42], to keep up with a quickly evolving field.

To encourage sharing and incorporation of community-built and

commercial tools they should be easy to adopt into the interpreta-

tion workflows used in practice. The first step to achieving this is

to agree on the definitions of each processing step instead of focusing

on implementations. This has already happened for NGS variant calling

pipelines[362], which are often composed of multiple commandline tools

that are loosely connected by scripts and intermediate output files. In

NGS variant calling, steps such as aligning sequenced reads and variant

calling are carried out by tools such as BWA, Samtools and GATK. In

this process, they use standard file formats FASTA/FASTQ, BAM/SAM

and VCF (Variant Call Format). This separation allows tools to be in-

terchanged and optimized as a distinct unit of functionality in a bigger

pipeline, driving innovations like Sambamba[332], which is specifically

developed for high-performance filtering of BAM files.

To better serve both research and routine diagnostic needs, we now

wished to expand our NGS pipelines further downstream with the same

modularity for fast integration and exchange of genome analysis meth-

ods such as the recently published GAVIN tool[345]. To facilitate this,

we present here a framework for standardized genomic analysis with in-

terchangeable components. It includes a new intermediate VCF-based

format to capture relevant findings as the basis for interoperability be-

tween the tools in the pipeline, a task for which there was no pre-existing

solution. We have tested and validated this framework with an open

source implementation for genome diagnostics including tools for vari-

ant annotation, interpretation and reporting.
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7.2 Results

7.2.1 Framework for downstream genome analysis

We developed a variant analysis framework consisting of a number of

intermediate files and tool roles (annotation, analysis, and reporting).

The intermediate files use the well-known VCF specification, with ad-

ditional extensions to support interoperability between alternative tools

that fulfill the same role. A new VCF extension called rVCF (Report

VCF) is used to describe variants of interest.

We implemented and validated the framework into an existing bioin-

formatics pipeline within UMCG clinical genome diagnostics laboratory

using both existing and newly developed tools. See Figure 7.1 for an

overview of the components and data flow within the framework. Below

we first describe the file formats and tool roles involved and then provide

examples of the implementation, usage and results of the framework as

applied to genome diagnostics.

We define the following intermediate files and tool roles:

Regular VCF files capture SNVs and small indels with the option to

also capture genomic coverage and structural variants using existing

definitions. The VCF 4.2 standard1 can describe any type of variation.

For genomic coverage, the gVCF2 extension may be used.

Annotation tools such as SnpEff[60], Ensembl VEP[228], Jannovar[175],

VarioWatch[56] and CmdlineAnnotator (presented below). These tools

accept VCF files as input and add more contextual information per vari-

ant.

1https://samtools.github.io/hts-specs/VCFv4.2.pdf
2https://software.broadinstitute.org/gatk/guide/article?id=

4017
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Annotated VCF files contain the enrichment of variants with addi-

tional contextual information from population references, known disease

genes/variants, in silico pathogenicity estimates, GWAS, pathways and

more. This is stored in a standardized way to ensure tool interoperabil-

ity (i.e. steps can be changed without needing to rewrite the pipeline).

We reuse existing field definitions where possible, such as the SnpEff

ANN field3 and Ensembl VEP CSQ field4. In addition, we added fields

such as CADD SCALED (for CADD scores) and EXAC AF (for ExAC

allele frequencies) for more annotations.

Analysis tools such as GEMINI[253], InterVar[202], VIKING[232], KGG-

Seq[201], VAAST[181] and GAVIN+ (presented below). These tools

filter and query annotated VCFs to find candidate variants. Ideally,

these tools output their results in Report VCF which can be processed

or visualized further by other tools.

Report VCF files store the outcome of a genome analysis, such as

GWAS p-values or diagnostic interpretation. This intermediate file for-

mat stores relevant findings in a computer-readable format to increase

pipeline flexibility by disconnecting results from reporting (see Figure

7.2). We build upon the VCF format by defining a specific extension

for results, abbreviated ’rVCF’. This format is fully VCF-compliant but

adds an extra INFO field named RLV (relevance) that ensures tool in-

teroperability within this framework. This field contains the explanation

for why this variant was thought to be relevant for the question imposed

on the original data.

The RLV field was developed with the following criteria in mind: it

should (i) be broad enough to allow many types of uses (e.g. for diag-

nostics, genome research, population studies); (ii) be specific enough

for the results captured to be informative, at least for our diagnostic

3http://snpeff.sourceforge.net/VCFannotationformat_v1.0.pdf
4http://www.ensembl.org/info/docs/tools/vep/vep_formats.htm

l
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rVCF

1. Sample prep

and sequencing

2. Calling variants

and genotypes

3. Annotation of

variants

4. Filtering and

analysis ...

...

Patient molgenis

..do what you want

CARTAGENIA

Figure 7.2: Creation and possible applications of the rVCF format. After the

output has been generated by the analysis step, the results are stored in an

rVCF file. This file can then be further analyzed or used to create a report.

We have processed and visualized results in MOLGENIS[328] and Cartagenia

Bench LabTM (Agilent Technologies), but any other tool or environment can

be used including GATK[344], Integrative Genomics Viewer[341], scripting

languages and command line.

use case; (iii) provide all necessary contextual information to explain

why a variant is relevant for the question posed; (iv) be structured

and simple enough to allow reports to be created in a straightforward

way (e.g. by templating); and (v) not contain unnecessary fields that

would bloat the specification beyond its intended purpose and make it

harder to use. See Table 7.1 for a detailed breakdown of the fields in

the rVCF specification and how they can be used for different use-cases.

Reporting tools turn Report VCF into result overviews that can be

read by human users and tailored to a specific audience. A database

system such as MOLGENIS, for example, can import, store, query and
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Field Definition

allele The alternative allele in question, since VCF has
multi-allelic sites

alleleFreq Reference database minor allele frequencies, e.g. ExAC,
GoNL or 1000G

gene Gene name or identifier, e.g. HGNC symbol or MIM
accession

FDR Any pre-calculated FDR thresholds for this variant, gene
or transcript

transcript Transcript used, e.g. SnpEff canonical transcript

phenotype Trait of disorder in question, e.g. trichotillomania, BMI
or ethosuximide resistant

phenotypeInheritance Mode of inheritance, e.g. dominant, recessive, additive

phenotypeOnset Age of onset, e.g. pediatric, adult, L2-stage

phenotypeDetails Extra phenotype info, e.g. treatment options or
literature references

phenotypeGroup Grouping of phenotypes, e.g. cardiovascular,
neurological, oncological

< many > sampleStatus How this sample is potentially affected based on
genotype and inheritance e.g. HOMZYG, AFFECTED,
COMPOUND, DENOVO, CARRIER

< many > samplePhenotype The actual sample phenotype, taken from VCF
’SAMPLE’ annotation field

< many > sampleGenotype Sample variant or marker genotypes with possibly
quality or probability data

< many > sampleGroup Grouping of samples, e.g. case, control, EUR, AFR,
infant, adult

variantSignificance Type or value of variant significance, e.g. Reported
pathogenic, Predicted pathogenic, pval 0.0035

variantSignificanceSource Tool or source used to discover this variant, e.g. your
lab list, ClinVar, PolyPhen2, CADD, SIFT, GAVIN

variantSignificanceJustification The reason why source thought this variant was
interesting, or the criteria used by prediction tool

variantMultiGenic Denote how this variant is potentially part of digenic or
other complex forms of inheritance

variantGroup Grouping of variants, e.g. suggestive, significant,
iarc class 5

Table 7.1: rVCF format. Interoperability is ensured by standardizing inter-

pretation information within the framework using a new ’RLV’ field. Within

this field, specific interpretation data can be described using the VCF standard

INFO sub-field structure. Any sub-fields marked with < many > may con-

tain multiple values, each linked to specific sample identifiers. Multiple RLV

values may be present to accommodate multi-allelic variants and overlapping

gene annotations.
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share genomic data and analysis results, then format it for diagnostics

reporting from a diagnostics lab in a way that the clinical geneticist can

use. The system can be used to create analysis reports from the stored

results.

Analysis reports are the final products of the downstream analysis.

They can be clinical patient reports for doctors or statistical genome-

wide reports for researchers. Multiple reports for different users and

questions may be generated from an analysis, and within a report there

is no limit on flexibility or interactivity, although use of single file doc-

uments with a simple and well-thought out graphical layout is encour-

aged.

Validation tools (automatically) test and evaluate pipeline results in a

standardized way against a gold-standard data set. Such validation is a

precondition for diagnostics implementation. Examples of possible val-

idation tests include a false omission test to count how many expected

hits were actually observed in the Report VCF output, a false discovery

test to see how many unexpected hits were found, or a combination of

the two. These tests can be executed on individual level, on gene level,

or across the whole genomes of many individuals simultaneously. Vali-

dations of the pipeline are (automatically) performed whenever software

versions or data sources have been updated.

7.2.2 Implementation for genome diagnostics

We used this framework to implement an automated downstream anal-

ysis and reporting pipeline for genome diagnostics. Below we describe

examples of annotation, analysis and reporting tools that are connected

by using the standardized interpretation data format.
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Annotation tool: CmdlineAnnotator

We implemented a high-performance tool that performs annotation

tasks that enable variant enrichment. It wraps common genomic an-

notation sources, such as ExAC[196], 1000 Genomes[18], Genome of

the Netherlands[244], ClinVar[191] and CADD[185] in a standardized

way. This enables us to quickly add and combine different annota-

tion steps, which was one of our goals with this framework. The tool,

MOLGENIS CmdlineAnnotator, can be run on command line making

it easy to script into typical bioinformatic pipelines, but we have also

implemented a web interface for interactive use. The tool requires no in-

stallation other than downloading an executable, and its use is straight-

forward. MOLGENIS CmdlineAnnotator supports any valid VCF file,

handles multi-allelic variants and can match equivalent variants even

when their notation is different (see Methods and Materials).

Analysis tool: GAVIN+

We also created a new analysis tool to replace the analysis protocol

we had used before. GAVIN+ is a diagnostic interpretation tool that

prioritizes DNA variants of potential clinical relevance in the genome. It

achieves this by using GAVIN[345], a sensitive tool to predict pathogenic

variants based on gene-specific CADD scores calibrated on ExAC, Clin-

Var and SnpEff. In addition, GAVIN+ matches against candidates

against known pathogenic variants in ClinVar but removes potential

false positives with a GoNL/ExAC >5% MAF. The tool then queries the

Clinical Genomics Database[319] to find affected and carrier individuals

depending on sample genotype and mode of inheritance. For unchar-

acterized genes, the default heterozygous, compound heterozygous and

homozygous states are assigned. Depending on the input VCF, addi-

tional knowledge is automatically used. This includes trio-aware sample

filtering and genotype phasing to check validity of compound heterozy-

gous hits, or reassigning status from, e.g., ‘homozygous by compound

mutation’ back to ‘multiple hits on the same allele’. Hemizygous geno-
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types for chromosome X and Y are also taken into consideration. The

tool even works on mitochondrial genotypes, albeit with limited refer-

ences. We run GAVIN+ as a command line runnable standalone tool

that takes an annotated VCF file and returns a Report VCF file.

Report VCF: novel format

The Report VCF (rVCF) format is used to mark variants that may be

of clinical interest. The field that captures the clinical relevance, which

is similar to SnpEff’s ANN field, consists of a single string with multiple

sub-fields separated by pipe symbols. The values are described in the

VCF header and include the alternative allele in question, gene, and

transcript (just as in ANN), but rVCF also includes associated pheno-

type, inheritance mode, onset, genotype and affected/carrier status of

samples, reason why this variant was relevant and according to whom.

There are currently 19 values within the RLV field, but in practice

the notation is quite compact because unused sub-fields add only one

character to the notation. See Table 7.2 for examples of comparable

VCF INFO field extensions for the same variant, including an example

of the RLV field.

Because all applicable sample genotypes in question are now stored

in the RLV field, information on the genotype used is left out of the rVCF

file. The data reduction achieved by selecting only variants of potential

relevance is substantial, and turns out very relevant for usage in a health

care setting. For example, on a data set of samples from 69 patients

that were sequenced for panel of 96 dystonia genes, we reduce 2,154

variants (6.3 megabyte, MB) to 63 variants (90 kilobyte, kB). A patient

exome of 108,004 variants (77 MB) was reduced to 449 variants (625

kB), and a combined VCF with 282 exomes of 790,297 variants (7.3

GB) was reduced to 19,572 variants (17 MB). In research one might

still want to retain all data, therefore we developed a helper tool to

merge the rVCF files back into the full list of variants and genotypes in

the original VCF file, which provides more flexibility for how the format
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VCF INFO field Data example

Consequence

annotations

from Ensembl

VEP

CSQ=T | 5 prime UTR variant | MODIFIER |
UROS | ENSG00000188690 | Transcript |
ENST00000368797 | protein coding | 1/10 |||| 7

||||||| -1 || HGNC | 12592;

Functional

annotations

from SnpEff

ANN=T | 5 prime UTR variant | MODIFIER |
UROS | UROS | transcript | NM 000375.2 |
Coding | 1/10 | c.-219C>A ||||| 6722 |;

Relevance

annotations

from GAVIN+

RLV=T | 0.0 | UROS | 0.0

0.011980830670926517 | NM 000375.2 |
Porphyria congenital erythropoietic |
RECESSIVE | Pediatric |||
DNA7654321:CARRIER || DNA7654321:0s1 ||
Reported pathogenic | ClinVar |
NM 000375.2(UROS):c.-219C>A UROS

Pathogenic ||;

Table 7.2: Examples of VCF INFO field definitions. The VEP consequence

and SnpEff annotation fields describe the functional effects of a variant on

genes and transcripts at its locus. The relevance field denotes why this par-

ticular variant and effect was included in the analysis result, such as screening

for candidates that may explain a clinical phenotype.
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can be used. Another helper tool can split the compound RLV field into

many separate info fields for ease of import and filtering in other tools.

Reporting tool: patient report for genome diagnostics

We have implemented a report generator to visualize the information

contained within rVCF using the MOLGENIS web database, although

interested readers can easily write their own. The rVCF files can be

uploaded and stored in the database just like any other VCF file. After

importing, the genomic data can be browsed, queried, visualized and fil-

tered using standard MOLGENIS UI components in the Data Explorer.

In addition, users can generate reports based on a simple template lan-

guage (FreeMarker) and use R, Python or JavaScript and web services

to make very interactive reports. These templates can be uploaded,

customized, changed, and reused within the database itself.

We have defined a patient report template that transforms the data

into an overview showing the main findings of potential clinical rele-

vance. This report ranks the variants by importance for medical inter-

pretation based on the evidence from the data and how well genes and

variants are clinically characterized[229]. Users can apply a number of

post-filters within the report if needed. For instance, they may wish

to exclude or include certain genes, e.g. those for late-onset disorders

in the case of a young patient, or adjust the variant MAF inclusion

threshold. See Figure 7.3 for an example of this report.

7.2.3 Validation tool: evaluation for diagnostics

Establishing a molecular diagnosis is only possible when enough data is

filtered out to allow human interpretation of the remainder while main-

taining reasonably confidence that computational pre-filtering did not

remove the causal variant. To estimate the number of variants that were

not detected (false negatives or missed), and the number of variants

incorrectly implicated (false positives) in our pipeline implementation
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for genome diagnostics, we set up an automated validation procedure.

These validations can be quickly run as many times as needed to check

performance and expected output of pipelines whenever they undergo

any change or update. This allows efficient testing and uptake of new

methods for clinical use, which should increase diagnostic yield.

Estimation of false omission

First we investigate how many of the pathogenic variants that we want

to find are actually detected. A missed detection, or false omission, is

the most worrisome type of error for molecular geneticists and other

experts because a diagnosis cannot be established.

Public benchmark data

We performed a false omission rate (FOR) analysis on the GAVIN+ in-

terpretation tool (version 1.0) using known pathogenic variants. First,

we calculated gene-specific FOR on the GAVIN[345] benchmark set,

a comprehensive gold-standard consisting of 8,087 unique pathogenic

variants from various sources (VariBench, ClinVar, MutationTaster and

UMCG clinic), in 1,113 genes. In total we detected 7,598 of the 8,087

(94%) pathogenic variants. For 889 (out of 1,113) genes we recovered

all their variants, meaning these genes have a FOR of 0%.

In-house patient variant list

As an additional analysis, we exported the most recent controlled in-

house list of interpreted variants from our current clinical diagnostic

interpretation software. In this list there were 980 unique variants clas-

sified as Pathogenic or Likely pathogenic. We recall 936 of these 980

variants, or 95.5%, consistent with the previous result. See Figure 7.4

for an overview of false omission counts per gene.

In-house patient cases

Lastly, we gathered diagnostic results of 31 patients for whom whole
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genome or whole exome sequencing was performed to find the molec-

ular cause of their diseases. These include 21 adults from our clinic

(2x pulmonary arterial hypertension, 2x familial cancer, 1x familial hy-

percholesterolemia, 2x epilepsy, 2x dystonia, 2x epidermolysis bullosa,

10x cardiomyopathy) and 10 critically ill newborns and infants from

our rapid genome sequencing program[348]. Executing our diagnostic

implementation of the framework resulted in a small number of hits

that was checked by molecular geneticists. In the adult patients, we

retrieved the causal pathogenic variant in 18 of 21 cases. For the 10

newborns, we found the correct mutation in all 10 cases. In total, we

recalled 28 out of 31 variants, or 90%. The variants that were missed

can be found in Table 7.3.

Estimation of false discovery

To gain confidence in our method to predict a variant to be pathogenic

for a patient, we estimated how often it would return false hits in

genomes of healthy individuals. A hit here means a potentially pathogenic

variant under an acting genotype, e.g. heterozygous for a dominant dis-

order or homozygous for a recessive disorder. A very low or even zero

number of positive hits in healthy individuals would increase the chance

that a hit found in a patient is indeed causal for disease.

Public reference genomes

To estimate the gene-specific false discovery rate (FDR) of the inter-

pretation pipeline, we used 2,504 healthy individuals who were whole-

genome sequenced in the 1000 Genomes Project[18]. In total, we used

38,097,906 non-intergenic variants observed across chromosomes 1-22,

X, Y, and MT. Per gene, we counted how many unique samples would

have one or more variants detected as potentially pathogenic. This

may happen in affected status, meaning that the genotype matches

the known inheritance mode of a clinical gene, or if the sample has a

homozygous genotype. For carrier status, the sample is heterozygous,
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FOR

bench-

mark

TTN c.68225-1G>C

(splice

acceptor-site

variant)

Likely

pathogenic

Variant CADD score of 24.3 is less

than 26.93 in a gene for which CADD

scores are informative

51 / 43

/ 15.7%

NPC1 c.3011C>T

(protein change

p.Ser1004Leu)

Pathogenic Variant MAF of 9.39E-4 is greater than

4.36E-4

3 / 3 /

0.0%

LDLR c.-135C>G (5’

UTR promoter

variant)

Pathogenic Variant CADD score of 12.88 is less

than 16.13 in a gene for which CADD

scores are informative

43 / 41

/ 4.7%

Table 7.3: Variants that were missed by the GAVIN+ interpretation tool. In two instances, CADD scores

were in the benign range and in one case the MAF was just too high to be considered pathogenic. The

gene FOR benchmark column shows the false omission test results for the corresponding gene as number of

variants expected, number recalled and percentage missed (E / R / M%).
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which cannot occur for dominant acting genes. When applied to the

GAVIN+ interpretation tool (version 1.0) described above, we find a

mean affected fraction of 0.26% with a median of 0%, and a mean

carrier fraction is 1.85% with a median of 0.72%. For an overview of

gene-specific false discovery rates, see Figure 7.5.

In-house patient variant list

We also performed an additional assessment on an in-house list of

variants classified by experts (for details, see Methods and Materials).

These variants were rare enough for careful assessment by clinical geneti-

cists as candidates for potential disease-causing effects but were found

to be plausibly harmless. Of the 9,145 variants classified as benign or

likely benign, the tool reports 336 hits, resulting in a false positive rate

of 3.7%.

7.3 Discussion

We have reported our development a conceptual framework for struc-

tured, automated interpretation of variants with interchangeable com-

ponents loosely connected by the VCF format. In addition, we created

a first implementation of the framework building on the existing open

source MOLGENIS software. We integrated existing commandline tools

as well as a number of new software tools for annotation, analysis and

filtering into an executable pipeline for genome diagnostics. The newly

proposed rVCF extension provides an interoperability backbone and,

importantly, adds the previously missing link by including information

that explains why variants were part of the analysis results. Further-

more, all rVCF files can be loaded into a web database that generates

a report for researchers that provides an overview of clinically relevant

findings for medical use. The content of the reports can be adjusted

using option menus, or fully customized by programmers using a tem-

plate system. By default, the reports rank variants from most relevant
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Figure 7.5: Estimations of GAVIN+ false discovery rate using data from the 1000 Genomes Project. Each

point represents the fraction of affected vs. carrier samples, i.e. the number of samples for which a potentially

pathogenic genotype was detected under that inheritance mode within a specific gene, divided by the total

number of samples. Only genes with known inheritance modes in the Clinical Genomics Database are shown.
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to least relevant.

We have proven our approach with a functional result, but both

the framework and its implementation have sparked many ideas for

further improvement. Below we discuss the framework itself, evaluate

the implementation results and finally provide direction for future work.

7.3.1 Framework considerations

Tool interoperability

The framework defines how tools and data fulfill specific roles within

the context of genome interpretation. However, it does not specify if

and how the output of one tool can be connected to the expected inputs

of another. While some output fields are standardized to a degree, such

as SnpEff’s ’ANN’ field, others are custom or even ambiguous. For

example, an ’AF’ field probably refers to allele frequency, but does not

make explicit from which population reference this frequency is taken.

An internationally recognized and maintained list of annotation fields

might solve this ambiguity, but this agreement needs support from the

entire community and requires software changes in most existing tools.

A subtler but easier to achieve strategy would be to use an ontology

of genomic annotations to which user can map their software output

fields. To use a familiar reference point, Sequence Ontology[89] could

be extended with genomic annotations, organized in categories such

as ’computational predictions’ and ’population allele frequencies’. In

this way, different output annotations could point towards a common

reference and software implementations could migrate over time without

breaking backwards compatibility.

Report VCF format

rVCF specification was defined to capture the relation of any phenotype

to any variant including the context in which this association was es-

tablished. The information included in rVCF was based on clinically
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relevant information such as disease phenotype and inheritance, af-

fected individuals, their genotypes, and the reason why this variant

was selected. The data captured in this format can be used to generate

genomic reports. We believe the specification can be easily adopted

by other genomic use-cases such as genome-wide association studies

(GWAS), quantitative trait loci (QTL) studies, linkage studies or epi-

genetic studies. Examples of values for domains other than genome

diagnostics, such as model organisms or statistical associations, are

shown in Table 7.1. While the format should be able to accommodate

all these applications, additional fields may need to be incorporated to

capture important information. We are curious to find out what these

extra requirements are, and we cordially invite the community to adopt,

standardize, provide feedback about and improve upon the format.

7.3.2 Implementation enhancements

Detailed validation output

The validation tools presented produce false positives and false nega-

tives percentages either overall or per gene. However, this does not

provide insight into the exact differences between the old and a new

pipeline or the types of errors made. To gain more insight, such tools

should create a report of their own that compares the errors of the

previous pipeline version with the current version. Information such as

’there is a 14% increase in false negative splice variants but a 20% de-

crease in false positive missense variants’ can be very helpful for further

improvements or a second tier test to mitigate a particular flaw.

False discovery analysis

The GAVIN+ tool was also applied to 2,504 healthy genomes to esti-

mate the rate of false discovery, i.e. to give an indication of how many

falsely accused variants can be expected for each gene (see Figure 7.5).

However, since the 1000 Genomes data is based on low-coverage se-
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quencing, it is unclear whether the false positives we found are caused

by flaws in our method or by false genotypes present in the data. Thus,

the resulting plot might reflect sequencing bias or genotype calling er-

rors instead of the actual limitations of our method. To make these

estimates more comparable and representative of the data used in a

diagnostic sequencing, we need high-coverage whole-genome data from

many thousands of healthy individuals from all ethnic backgrounds.

With the current data, causal variants might be dismissed because of

undeservedly high false discovery estimates of the genes they are in.

Another approach that could be used is to use population genomes as

a background from which we may calculate diagnostic significance P

values for individual patient genomes[365].

Phenotype-matched reports

The framework implementation we have presented uses only genomic

information to generate a patient or research report. Of course, the

clinical features of the sample offer vital clues as to which gene is

likely responsible for the disease. It would therefore make sense to in-

clude phenotype-based gene filtering or prioritization to the report. To

make this possible, associations of Human Phenotype Ontology (HPO)

terms[292] to their known disease genes could be integrated into the

system. Users can enter HPO terms that match the phenotypes ob-

served in a patient to shorten their list of candidate genes.

7.3.3 Increasing diagnostic yield

Reducing false positives

False positives in the context of genome diagnostics are harmless vari-

ants that are mistaken for pathogenic. Predicting many variants as

pathogenic translates to a high workload for human experts, who must

manually investigate variants before communicating the results to the

patient. To decrease the number of false positives, we can also use spe-
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cific populations like those provided within ExAC and 1000 Genomes in-

stead of population-wide allele frequency thresholds. Variants that may

be relatively common in one sub-population but not present in others

could be filtered out, having low overall MAFs but would logically be

considered harmless. However, with fewer individuals used to ascertain

the frequency of a variant within a specific population, the potential

bias introduced by randomly including non-representative samples also

increases. This can be addressed by calculating confidence intervals for

allele frequencies, and using those in practice instead of the direct allele

frequency values.

In addition, population reference databases such as ExAC offer not

only allele counts but also counts of observed homozygous and heterozy-

gous genotypes. For recessive disease genes, the number of observed

homozygous genotypes may be more informative than allele frequency,

as the variant may be carried within the population without pathogenic

effect.

Lastly, another improvement that could reduce the number of false

positives is checking for variants or sequencing artifacts previously clas-

sified as benign in ClinVar or other sources such as in-house variant

lists.

Reducing false negatives

False negatives in the context of genome diagnostics are pathogenic

variants that are not detected, a type of error that must be strongly

avoided. The number of false negatives could be reduced by built-in

consideration of pathogenic founder mutations. These can be common

enough for a MAF cutoff filter to accidentally remove them before inter-

pretation. Reporting these variants in international or local databases

for use as an interpretation safety net, which is already an optional

input for the GAVIN+ interpretation tool, would resolve this issue to

a degree. UMCG genome diagnostics uses an in-house list to identify

such variants, but an internationally shared and curated list would be
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an improvement.

While it is unfortunate that some variants can be missed, estimating

miss rates does provide an a priori measure of the difficulty of finding

pathogenic variants in their respective genes. Variants in genes with

high estimated miss rates can be double checked when patient symp-

toms point toward these genes as likely candidates. This knowledge

turns unknown unknowns into known unknowns, empowering the inter-

pretation process and shedding light on potential uncertainties.

Using structural variation

This study was focused on processing single-nucleotide variants (SNVs)

and small indels, but the structural variation (SV) output of tools such

as Manta[55] and Delly[281] would also be an important addition to

automated interpretation framework. The regions indicated to be dele-

tions, insertions, duplications, inversions or translocations may be com-

plemented with any SNVs and small indels called by conventional variant

callers to increase overall diagnostic yield or to obtain a more complete

genomic picture for research projects.

7.4 Conclusion

We have developed and evaluated a framework for structured, stepwise

downstream variant analysis. The aim was a structure that links the

different tools and data in this process to enable exchange, reuse and

improvement of components of equal scope across institutes. The novel

rVCF intermediate format allows standardized representation of analy-

sis results, and these can be used to quickly create patient or research

reports. We expect that this modular structure will also make it easier

to integrate the additional omics technologies that will soon support

next-generation sequencing, such as allele specific expression and splic-

ing effects from RNA-sequencing expression, epigenetic markers and

metabolomics.
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Geneticists have already adopted and learned to rely on best-practice

pipelines for NGS variant- and genotype-calling, partly because these

tools have matured by the efforts and support of the community but

primarily because there is too much raw data to assess by hand. Given

the ever-growing numbers of whole-genome patient sequences we must

extend this mentality further downstream towards analysis and inter-

pretation. To deal with false positives and negatives more effectively,

our approach includes automated validation and error estimation tools

applied to large benchmark sets to assess the quality and pitfalls of such

a pipeline. We have shown that our diagnostic framework implementa-

tion combines and automates the latest knowledge, tools and practices

to reduce the time and effort spent on easily resolvable patient cases, a

times savings that will provide human experts with the time they need

to solve puzzling cases that will further extend our knowledge of human

genetics.

7.5 Methods and Materials

7.5.1 MOLGENIS annotation tool

We developed MOLGENIS CmdlineAnnotator as an extensible annota-

tion framework that works seamlessly in both web and commandline

environments. It has some smart features to maximize the match of

input variants (patient) to resource data (context) such as population

references. As an example we can consider the case where the anno-

tation resource has a variant AGG > A, ATGG to denote both the

deletion of GG and the insertion of T and our input VCF file has a

A > AT variant at the same location. Though this variant is present in

the resource, it would likely be missed because the notation is different.

The CmdlineAnnotator matches this variant by removing but remem-

bering GG from AGG to match the input A. The input alternative

allele AT would subsequently be postfixed with GG to form ATGG,

which matches against the resource successfully. These slight but rele-
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vant differences can be responsible for misinterpretation during analysis.

CmdlineAnnotator version 1.21.1 source code and release are available

at https://github.com/molgenis/molgenis/releases/t

ag/v1.21.1.

7.5.2 Population reference for false discovery analysis

We downloaded the 1000 Genomes Project phase 3[18] release data

from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/rele

ase/20130502/. We annotated genes using SnpEff version 4.2 with

these settings: hg19 -noStats -noLog -lof -canon -no-intergenic -ud

0. Allele frequencies of Genome of the Netherlands[244] release 5 and

ExAC[196] release 0.3, and CADD scores[185] version 1.3 were an-

notated using MOLGENIS CmdlineAnnotator v1.21.1. All VCF FOR-

MAT fields except genotype (GT) were removed from chromosome

X and Y to harmonize the data with chromosomes 1-22. Also, the

genotyped samples for chromosomes Y and MT are different from

those in chromosomes 1-22. We wrote a simple tool (SampleFix-

For1000GchrYandMT.java) to harmonize the samples for Y and MT,

available at https://github.com/molgenis/gavin-plus. These

fixes now allow all data to be merged by stripping the headers and

concatenating the files in the order 1-22, X, Y and MT. The header

from chromosome 1 was added to the merged file with a few INFO

lines added that were specific for other chromosomes: LEN, TYPE and

OLD VARIANT from chromosome X, and VT from chromosome MT.

The resulting file was compressed to 8.4G with bgzip and indexed us-

ing tabix -p vcf. It contains 38,097,906 non-intergenic variants and

95,397,156,624 genotypes. The file is available at http://molgeni

s.org/downloads/gavin/.
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7.5.3 Pathogenic variants for false omission analysis

We used the GAVIN[345] variant classification benchmark set available

at https://github.com/molgenis/gavin. This set comprises

25,995 variants from which we select 8,087 pathogenic variants after

filtering duplicate genomic positions. We annotated these variants with

SnpEff 4.2, ExAC r0.3, CADD 1.3 and GoNL r5 using MOLGENIS

1.21.1 CmdlineAnnotator. A heterozygous genotype was added to each

variant to enable running of the GAVIN+ automated interpretation tool.

This dataset is available for download at http://molgenis.org/

downloads/gavin/.

We also used a list of variants interpreted by molecular and clinical

geneticists at the University Medical Center Groningen according to

Dutch medical center guidelines[242]. More details on the interpretation

criteria are provided in Van der Velde et al.[345]. This list contained

980 likely pathogenic or pathogenic variants and 9,145 benign or likely

benign variants after filtering for duplicate genomic positions. These

variants were annotated and processed as above, and access to these

data can be requested.

7.5.4 GAVIN+ interpretation tool

We developed the GAVIN+ tool to automate sample genome interpre-

tation. In a stepwise process, interesting variants are selected (based on

hits from GAVIN[345], ClinVar[191], or a user-supplied list of variants),

followed by a MAF filter, match of genotype to gene inheritance mode,

checks for compound heterozygosity and the use of trio or duo sample

genotype phasing and de novo variant finding. GAVIN+ supports multi-

ple alleles per variant that may be present in multiple overlapping gene

annotations. It is implemented in Java 1.8 (https://www.java.c

om) as free open source software at https://github.com/molge

nis/gavin-plus. A comprehensive TestNG (http://testng.o

rg) test suite ensures correctness and allows further development with

a limited chance of introducing bugs. Dependencies are managed by

185

https://github.com/molgenis/gavin
http://molgenis.org/downloads/gavin/
http://molgenis.org/downloads/gavin/
https://www.java.com
https://www.java.com
https://github.com/molgenis/gavin-plus
https://github.com/molgenis/gavin-plus
http://testng.org
http://testng.org


1

2

3

4

5

6

7

8

CHAPTER 7. BIOINF. FRAMEWORK FOR GENOME ANALYSIS

Apache Maven (https://maven.apache.org/). A precompiled,

command line runnable version of the tool can be downloaded at htt

p://molgenis.org/downloads/gavin/. A demo and manual

are available, as are the bundled resources needed to run the tool: Clin-

Var (any variant matching ’pathogenic’ from combined TSV and VCF

representations of 11 oct. 2016, 1.5 MB), CGD (version 11 oct. 2016,

380 kB), FDR (version 1.0, 946 kB) and GAVIN calibrations (r0.3, 331

kB). The implementation insures high performance by using a streaming

architecture with as little in-memory buffering as necessary and as much

output as possible immediately written to disk. This results in speeds

of millions of genotypes per second. GAVIN+ can analyze 300 whole

exomes in 2 minutes or the full 1000G FDR analysis (95,397,156,624

genotypes) in 2 hours on commodity hardware.

7.5.5 Running false omission analysis

We ran the GAVIN+ tool in a first pass (using -m CREATEFILEFOR-

CADD) to get a list of 34 indel variants that are not yet scored by

CADD. These variants were then scored by a local CADD 1.3 which

was installed offline following the instructions at http://cadd.gs.

washington.edu/download. After scoring, GAVIN+ was run for

a second and final pass using arguments: -i GAVIN FOR benchmark -

goldstandard nodup gonl.vcf -g bundle r1.0/GAVIN calibrations r0.3.tsv

-c bundle r1.0/clinvar.patho.fix.11oct2016.vcf.gz -d bundle r1.0/CGD -

11oct2016.txt.gz -a fromCadd.tsv -f bundle r1.0/FDR allGenes r1.0.tsv

-m ANALYSIS -o RVCF GAVIN FOR benchmark goldstandard nodup -

gonl r1.0.vcf. This was followed by a simple tool (FOR.java, available at

https://github.com/molgenis/gavin-plus) to report the

false omission rate using original VCF and the rVCF file produced by the

GAVIN+ tool. For each gene, we counted the number of pathogenic

variants in the original VCF that we expect to recover. We divide this

number by the observed number of variants in the rVCF as a missed

fraction for each gene to estimate how well GAVIN+ detection works
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for that gene. All files and results are available at http://molgeni

s.org/downloads/gavin/.

7.5.6 Running false discovery analysis

We ran the GAVIN+ tool in a first pass on the 1000G population refer-

ence set and got 1,136,050 variants that were not yet scored by CADD.

The local CADD 1.3 tool scored 1,110,509 (97.75%) of these, meaning

that 25,541 of 38,097,906 total variants (0.067%) remained un-scored.

This allowed GAVIN+ to be run in a second and final pass (using -m

ANALYSIS) of the data, resulting in an rVCF file with 381,482 se-

lected variants. To obtain false discovery rate estimates, we wrote

FDR.java, a simple tool that assumes that the hits in the rVCF file

are false. These hits are counted per gene as the number of sam-

ples that would have at least one matching genotype under one of

two inheritance modes. A sample is counted as affected when the

match is homozygous or compound heterozygous or heterozygous in

a known dominant disease causing gene, and counted as carrier when

heterozygous in either a recessive disease causing gene or an unknown

gene. A check on phasing may revert compound heterozygotes back

to carrier heterozygous multihit status. The FDR tool outputs a list of

19,230 genes, each with four columns: affected count, carrier count, af-

fected fraction (aff.count/2504) and carrier fraction (carr.count/2504).

Among these 19,230 genes, we find 8,399 with one or more affected

samples, 17,878 with one or more carriers, and an overlap of 7,047

genes (17878+(8399-7047)=19230). This list is further processed to

include all 26,023 SnpEff gene names present in the original VCF for

which no affected or carrier status was detected. This was done by

first extracting all gene names using GetAllGeneNamesFromVCF.java,

followed by using CombineFDRwithAllGenes.java to get the final FDR

result file with 26,044 genes. Note that 21 mitochondrial genes were

present in the rVCF file due to ClinVar hits, but these were not anno-

tated by SnpEff in the original VCF file, hence the final result includes
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slightly more genes. All result files and intermediates are available at

http://molgenis.org/downloads/gavin/.

7.5.7 Visualizing FOR and FDR analysis results

We wrote a small R script (FDR plot.R) that uses the FDR result file

with 26,044 genes as well as gene annotations from Clinical Genomics

Database[319] (file date: August 31, 2016) to plot the observed af-

fected versus carrier fractions. After merging with CGD we could plot

3,232 of these genes with known inheritance modes. The color and

shape of the points is dependent on the inheritance mode, scales are

base 10 logarithmic. Zero values were replaced with 1e-4 to allow loga-

rithmic scale. Some genes appear in unexpected plot locations, but can

be logically explained. For instance, CSF2RA appears in the recessive

band while being on chromosome X but it is located in the X-PAR1 re-

gion. Conversely, TENM1 appears in the X LINKED band with a blue

icon because it has a mistakenly RECESSIVE annotation. For only the

plotted CGD genes, we find a mean affected fraction of 1.51% with a

median of 0.08% and a mean carrier fraction of 1.43% with a median

of 0.20%. Another R script (FOR plot.R) visualizes the FOR result file

with 1,113 genes. After merging with CGD we can plot 1,048 of these

genes with known inheritance modes. Again the color and shape of the

points is dependent on the inheritance mode. All scripts and required

files are available at https://github.com/molgenis/gavin-p

lus.

7.5.8 MOLGENIS reporting tool

To store and visualize the rVCF files produced, we used a modified ver-

sion of MOLGENIS 1.21.2[328]. Users can simply import rVCF files

via the standard Data Importer, which can then be viewed in the Data

Explorer. To create the custom reports, we used the FreeMarker tem-

plate engine (http://freemarker.org). The templates should be
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placed in the molgenis/molgenis-app/src/main/resources/templates/ folder,

and adhere to this naming scheme: view[reportname]entitiesreport.ftl.

For instance, a PatientReport should be named viewPatientReport-

entitiesreport.ftl. The templates are then added as an additional tab

for a dataset by clicking the Configure button, and in the Reports

box define this link using [reportname]:[datasetname]. For instance,

we connect the PatientReport to an rVCF named Cardio using Cardio:-

PatientReport. Multiple links can be separated using commas, e.g. My-

ResearchExomes:GeneReport,Dystonia:PatientReport,Cardio:PatientReport.

The used MOLGENIS and created templates are available at http:/

/github.com/joerivandervelde/molgenis.
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CHAPTER 8. DISCUSSION AND PERSPECTIVES

Abstract

The enormous wealth of data generated in the life sciences presents us

with incredible opportunities to improve medical genetics, but also with

an equally big bioinformatics challenge to fulfill this promise. The scope

and complexity of this challenge is exacerbated by the increasing speed

at which new methods, tools and data sets become available across a

wide range of disciplines ranging from statistics to computer science

and from model organisms to clinical validation. In this thesis, I con-

tributed a number of bioinformatics models, methods, and integrated

systems thereof as infrastructure to enable rapid translation of these

new resources into medical applications.

Introduction

In this thesis I first developed new data management and processing

models in chapter 2 and implemented these to store, integrate and

visualize model organism data in chapter 3. By connecting human

disease phenotypes to model organisms, I showed that this approach

can be used to discover new disease leads in chapter 4.

I then investigated how existing methods for computational esti-

mation of variant deleteriousness can be used to predict pathogenicity

classification with high precision and recall in chapter 5. In chapter 6

I generalized this method to thousands of genes, and molecular geneti-

cists can now use an integrated online system to classify patient DNA

variants in the context of large reference data.

While new methods and data become available at ever increasing

speeds, their implementation in clinical practice lags behind because

of the time needed to validate and implement them into clinical prac-

tice. To implement and validate new analysis protocols rapidly and

efficiently in research and clinical practice, we need a streamlined auto-

mated pipeline for data processing, decision making, and reporting of

results. I therefore developed a software system for structured variant

interpretation, currently adopted in routine diagnostics, that combines
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new methods and models with existing tools and knowledge databases

in chapter 7.

In this chapter I will consider the meaning and implications of the

work presented in this thesis and look to the future potential and on-

coming challenges of the field. I first discuss in section 8.1 the successes

and challenges of flexible models to capture, integrate (8.1.1), share and

reuse life science data (8.1.2). I address how more people could benefit

from these innovations (8.1.3), and if perhaps smarter technologies are

needed to get more value from complex data (8.1.4).

Second, I consider the challenges of method development, in which

data plays a critical role in section 8.2. The importance of data quan-

tity and quality is exemplified (8.2.1), as well as pitfalls in method

benchmarking (8.2.2). I highlight future ways to overcome difficulties

in finding (8.2.3) and running appropriate methods (8.2.4).

Finally, I examine how to better implement complex systems for

application to medical genetics in section 8.3. Crucial aspects such

as sharing of workflows (8.3.1) and community expertise (8.3.2) are

discussed, and I suggest future work on multi-omics analysis (8.3.3) and

semantic protocols (8.3.4). For each of the sections I will summarize

key question and key points.

8.1 Flexible models for life science omics

data

Life science data can be stored, managed and queried in a multitude of

different ways, each with their own advantages and drawbacks. In this

section, I discuss various models and aspects involved in confronting

the life science data challenge.
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Key question and points of this section

How should data models be designed to integrate, reuse and share data

from life science experiments in order to extract knowledge that benefits

medical genetics?

Key points

• We have researched and evaluated different data integra-

tion models that make genotype-phenotype analyses more

contextual and insightful (8.1.1).

• Some applications demand greater data model flexibility,

but the loss of predefined data classes presents new issues

(8.1.2).

• Ontologies can be used to give explicit meaning back to

the data, allowing methods and tools to again perform

cross-set analyses (8.1.2).

• Managing growing quantities of life science data in spread-

sheets and flat files is problematic, therefore more should

be done to increase uptake of better alternatives (8.1.3).

• Data is being shared, but without smart storage algo-

rithms it remains difficult and time consuming to ask even

basic questions (8.1.4).

8.1.1 Integration of heterogeneous omics data

Methodological (re)use of all available life science data is difficult.

Making data suitable for reuse requires structured storage with suf-

ficient metadata to allow retrieval and interpretation, which is trou-

blesome and time consuming to achieve. In addition, various stor-

age paradigms are needed to complement traditional databases be-
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cause data volumes are large and database structures often complex

and highly heterogeneous[329], which limits interoperability and inte-

grateability of these data. Data covers a wide variety of phenotypic

measurements including age, gender and height; answers given in ques-

tionnaires; detailed clinical observations; and large-scale molecular mea-

surements such as DNA sequencing, gene expression, metabolomics and

proteomics. Moreover, these data may be collected from many subjects,

at different timepoints, from multiple tissues, using a various wet and

dry laboratory protocols. Finally, rapid development of new profiling

techniques and analysis methods requires data infrastructure to rapidly

change to accommodate.

The eXtensible Genotype and Phenotype model

We investigated how data models and supporting software systems

should be (re)designed to accommodate this heterogeneity and to be

effective in handling these data. The first result was the XGAP data

model developed to capture a variety of life science data that is de-

scribed in chapter 2 and summarized in Box 1.
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Box 1: Brief explanation of the XGAP data model

The innovative XGAP model facilitates integration of a wide

range of data sources into one conceptual framework by en-

abling researchers to define observations as any combination of

subjects (the thing being observed) and trait (the measurable

quality). As a result, data can be flexibly stored, eliminating

the need to define the exact storage requirements for exper-

imental data, which is impossible beforehand and moot after

project completion. For example, definitions of concepts such

as ’Gene’, ’Marker’, ’Individual’ or ’Metabolite’ remain constant,

but they can be used to create any dataset while the application

is running. Then gene expression data can be defined as ’Gene’

× ’Individual’ with a numeric value at each combination and a

genotype map as ’Marker’ × ’Individual’ with categorical values,

e.g. ’AA’, ’CC’, ’AC’. After QTL analysis, the result then can

be defined as ’Gene’ × ’Marker’ where each value indicates the

statistical strength of the association between gene expression

and genotype.

XGAP’s flexibility is a sharp contrast to traditional applications built

on relational databases that need to be taken offline for redesign when

a new data modality comes in. A life science database can now be

created when a research project starts and experimental measurements

plus contextual data from external providers, e.g. gene annotations or

pathway definitions, added naturally as the project progresses.

We implemented XGAP into the MOLGENIS[328] software toolkit

that generates database software infrastructure from data model and

user interface specifications. By combining the MOLGENIS software

and XGAP datamodel as a foundation, we now can implement generic

life science databases that can handle almost any omics/QTL data. We

published this system as xQTL workbench in chapter 3. This system

can handle any genotype-to-phenotype experiments and can be used as
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a template to create data portals for specific research areas. We demon-

strated the added value of xQTL first in C. elegans research[315], then

added a translation from model organism to human disease genetics.

The resulting WormQTLHD database[346] is described in chapter 4. Its

built-in visualization tools can be used to find clues for the molecular

workings of human disease in almost 100 online-accessible datasets.

When even more flexibility is needed

The XGAP model’s power comes from its fifty-fifty balance between

static data structure (the underlying structure does not change when

new data is loaded) and dynamic modeling (the structure can be easily

extended and adapted and depends on the genes and phenotypes in the

experimental data). The static structure acts as a stable template that

enables development of new software tools that then will work on all

data loaded because the tools know what data structure to expect. At

the same time new data modalities can be rapidly accommodated using

the flexible structure.

However, there are drawbacks to using (partially) static data struc-

tures. It requires users to familiarize themselves with a data model, and

limits the attributes that can be used to express information while si-

multaneously burdening the user with often unnecessary attributes. An

attribute is a property of the object type being described. An object

of the type ’car’, for instance, can have the attributes ’brand’, ’model’,

’color’, and ’year of construction’. Pre-defining the attributes for data

in life sciences can be very convenient for some uses, for instance if they

want to automatically connecting genomic data to a genome browser.

Nevertheless, we found that more flexibility is better in some other

cases. Therefore, when we developed MOLGENIS 2.0, we created the

even more flexible EMX (entity model extensible) storage model. In

MOLGENIS 2.0, the user uploading the data has full control over all

aspects of the data model, meaning that tabular data can be defined

at column and data type level, as well as cross-linked in any way. This
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allows use of XGAP or other data models if desired.

Together with collaborators, we evaluated the models in many other

online databases for various domains within life sciences[4]. Figure 8.1

shows the two main paths in evolution (XGAP and EMX data modeling)

and a selection of currently active software applications. These appli-

cations are powered by the MOLGENIS platform which allows flexible

generation and configuration of database application.

8.1.2 Making omics data reusable across systems

The most recent versions of MOLGENIS allow the user to define and

import any data structure. This is highly appreciated by users as it

provides complete freedom to upload whatever data they like. MOL-

GENIS uses a simple tabular format that contains both the data itself

and its meta-data describing the flexible attributes with strongly-typed

values. After import, data set columns can be added, deleted or rede-

fined if needed. Data values can cross-reference to other datasets or

rows within datasets to create a complex ad hoc data model. Users can

thus create a database perfectly tailored to their storage needs that can

be re-tailored whenever those needs change. The learning threshold of

creating and managing such a database is low, and it encourages people

to upload and connect any data they find relevant. However, because

the semantics of the data are now no longer explicit, this presents a

new challenge.

Need standard model building blocks

While it is now much easier to bring data together into one MOLGENIS

system, the cost of this freedom is the loss the explicit meaning of the

data, as compared to XGAP. This greatly limits data re-use because

data cannot be easily integrated with other datasets and analysis tools

cannot be used. In other words, for data to be reusable its semantics

must be clear so humans as well as software can understand and know
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DEB central
Van den Akker et al,

Human Mutation (2011)

http://www.deb-central.org

NIPTRIC
Sikkema-Raddatz et al,

Scientific Reports (2016)

http://niptric.eu

PALGA database
PALGA Openbare Databank

Stichting PALGA (2014)

http://www.palga.nl

… and more

MOLGENIS software
Swertz et al, Nat. Rev. Gen.

(2007) and BMC Bioinf. (2010)

http://www.molgenis.org

Observ-OM model
Adamusiak et al,

Human Mutation (2012)

http://www.observ-om.org

XGAP model
Swertz et al,

Genome Biology (2010)

http://www.xgap.org

MOLGENIS 2.0 +

EMX model
publication planned

http://molgenis.github.io

A.S.E. browser
Deelen et al,

Genome Medicine (2015)

http://www.molgenis.org/ase

Chr. 6 questionnaire
van Ravenswaaij et al.

Chr. 6 Project group (2015)

https://www.chromosome6.org

LifeLines catalogue
Lifelines Research Office

Lifelines Databeheer B.V. (2013)

https://catalogue.lifelines.nl

GAVIN app
Van der Velde et al,

Genome Biology (2017)

http://www.molgenis.org/gavin

CHARGE database
Janssen et al,

Human Mutation (2012)

http://chd7.org

MVID registry
Van der Velde et al,

Human Mutation (2013)

http://mvid-central.org

WormQTLHD

Van der Velde & de Haan et al,

Nucleic Acids Research (2014)

http://www.wormqtl-hd.org

WormQTL
Snoek & van der Velde et al,

Nucleic Acids Research (2013)

http://www.wormqtl.org

xQTL workbench
Arends & van der Velde et al,

Bioinformatics (2012)

http://www.molgenis.org/xqtl

5GPM analysis
Van Diemen et al,

Pediatrics (2017)

http://www.molgenis.org/5gpm

β

δ

α

β

γ

γ

γ

δ

ββ

α

α

α

Figure 8.1: The MOLGENIS family of software, data models and applica-

tions. The core software and models (top left corner) form the basis for a

variety of applications, with those in green boxes directly built from the XGAP

data model. The types of applications are indicated with an α for research

portals, β for patient registries, γ for diagnostics support, and δ for biobank

catalogues. Blue text indicates a peer-reviewed published article.
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what to do with it. Users A and B may both upload a set named

’Genes’, but the system does understand whether these actually refer

to the same concept. The same problem applies to any attributes within

these data sets. Perhaps they both have a ’Position’ column, but one

may be measured in centimorgan and the other in base pairs. Even

if the units are the same there may be crucial contextual differences,

for example base pair positions that are derived from different genome

builds. This uncertainty makes it impossible to reuse tools and methods

because certain necessary attributes cannot be automatically connected.

To deal with this issue, the latest MOLGENIS versions use small

data models to enable implementation of standard analysis protocols

without limiting the flexibility of the system. Some data has a very

predictable and often reoccurring structure. A good example is the

’genomic location’ tied to variants and other features of the DNA. The

attributes of these genomic locations are usually chromosome, position,

genome build, reference and alternative base, which are automatically

mapped to a micro-model and understood by the system so that tools

such as the genome browser can immediately visualize the data.

Use of ontologies

The micro-model solution is an efficient way to deal with highly pre-

dictable data. However, most flexible data will still not be understood

by the system and therefore not easily connected, integrated and ana-

lyzed. Note that the difference between a data model and an ontology

is subtle but significant, and therefore we clarify this in Box 2.
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Box 2: Difference between data model and ontology

Ontologies can be thought of as dictionaries that define terms,

with the special addition that terms can be related to each other.

Data models can be thought of as floor plans that offer explicit

structure, while the definitions of the concepts used are implicit.

For example, a floor plan could specify how a living room is

connected to the other rooms and show the arrangement of the

furniture, whereas an ontology would define the concepts of a

living room and elaborate on known types of furniture. People

who used different building plans to construct their house can

use the ontology to refer to their now shared understanding of

a living room, and find out if they both have a couch in it.

To overcome this problem, we enable users to annotate or ’tag’ their

free-form data with additional meta-information that explains what the

data means. The database must contain concepts such as ’Position’

measured as ’Integers’ on reference build ’GRCh37’ for ’Homo sapiens’.

These concepts can then be mapped on the sets, rows and columns of

data sets imported. Tools use these tags to understand the meaning of

the data, which ensures that queries and tools can be reused between

heterogeneous datasets.

The meta-data used to annotate data with meaning are called on-

tologies, which are common dictionaries of agreed-upon, well-defined

terms and their relationships. Building an ontology through input from

an international community of domain experts ensures a shared point

of reference for the clear communication of meaning. Annotating data

with ontologies offers many advantages in terms of connectivity and

reasoning, but requires a significant investment of expert’s time. To

drastically lower this burden, we have developed strategies for auto-

mated matching of terms to ontologies[255] and for smart matching

values to coding systems[256]. The resulting systems allow users to

harmonize data items and values in a fraction of the time it would nor-
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mally cost, thereby enabling pooled data analysis for higher statistical

significance. The MOLGENIS online data platform can assist users to

quickly interconnect their data via semantic annotation[256].

Ontologies for medical genetics

Structured ontologies also provide computational advantages. Ontolo-

gies may be expressed as graphs of connected terms, typically a tree-

shaped hierarchies where a broad root term branches out into more spe-

cific terms. Famous ontologies used in medical genetics include ICD1

and SNOMED-CT2 for diseases, and Gene Ontology[16] to describe

genes.

The Human Phenotype Ontology[292] (HPO), shown in Figure 8.2,

is an ontology of particular usefulness. HPO terms are becoming an

integral component of clinical work in many medical centers, including

the UMCG[348], where they are used to convey patient symptoms to

the decision support software. Symptoms can be expressed in HPO

terms that may be broad or specific. Likewise, diseases may be ex-

pressed as collections of multiple HPO terms. Computer algorithms

can accept HPO terms as inputs and take advantage of the underly-

ing graph structure, for example, to find a known disease that best

matches a set of input symptoms. The paths between the terms are

used as a distance measure, and advanced methods can even calculate

semantic distance between collections of terms weighted by informa-

tion content[285]. This clears the way for advanced tools[125] that can

guide or support a genomic diagnosis with a robust phenotypic match

of patient symptoms to a known disorder for which the causal gene is

known.

1http://www.who.int/classifications/icd/en
2http://www.snomed.org
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Figure 8.2: Graph of the Human Phenotype Ontology colored by eccentric-

ity, i.e. the distance to root node, from 0 (green) to 13 (red). The blue

box shows a zoomed-in view so that labels can be read and the hierarchical

structure becomes apparent. This graph has 11,044 vertices and was visual-

ized using CytoScape (http://www.cytoscape.org) on the OBO file of

HPO downloaded June 2015.
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8.1.3 Spreadsheets in the era of big complex data

Many researchers, clinicians and other specialists use unsophisticated

data storage methods such as spreadsheet documents. While spread-

sheets are a useful means for interacting with tabular data, they are

not intended to be used as local databases for serious long-term data

management. As datasets in spreadsheets grow in size and complexity,

many problems arise regarding data consistency[390], corruption (e.g.

the ’autocorrection’ of gene names that look like dates[383]), availabil-

ity, versioning, performance, backups, multi-tenancy and security - nor

do local spreadsheets support FAIR principles[366, 368] that encourage

data to be Findable, Accessible, Interoperable and Reusable.

Making relational database technology accessible

Relational database technology has developed over the many decades

since its invention[62] to specialize in highly structured and consistent

management of high-dimensional tabular data. Frameworks such as

MOLGENIS enable the creation of front-end web interfaces that allow

relational databases to be operated in a more visual and user-friendly

way. Many software applications that were developed with the MOL-

GENIS framework, shown in Figure 8.1, prove that this approach brings

the advantages of relational databases to a variety of life science data

applications that might otherwise remain hidden and vulnerable in local

spreadsheets.

The challenge of big data

Relational databases are not always an appropriate storage solution.

Huge files are currently being produced by automated data processing

tools by high-throughput technologies such as whole-genome DNA se-

quencing. With costs dropping and thousands of samples sequenced

daily, the data is rapidly growing from terabytes to petabytes and be-

yond. It would therefore be highly impractical to store each atomic
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value from these data in a relational structure because there is no need

for this data to be query-able and a significant amount of additional

disk space would be needed to index the data.

However, when thousands of individuals are profiled over many years

and their data analyzed by many researchers in different projects, it

is inevitable that data is lost track of. Retrieving specific samples in

that situation would involve a costly exercise in ’forensic bioinformat-

ics’. Projects that want make use of the data, for example a combined

re-analysis of undiagnosed patients with a cardiomyopathy indication,

would have to spend a significant amount of time to simply retrieve the

right samples.

How to find and access large files

A catalogue system powered by a relational database can be used to

store sample metadata and file locations, along with detailed provenance

of how the sample was processed and analyzed, and of the results. Us-

ing information such as patient phenotype, tissue sampled, sequencing

platform and processing software used, data of interest can be quickly

found and used for analysis.

A publicly available example of such a big data catalogue is the Eu-

ropean Genome-phenome Archive [192], which currently contains every-

thing from raw sequencing files to genotypes called to phenotypes. The

data is organized in studies and data sets, and enriched with the prove-

nance of samples and the technology used for analysis, e.g. ”Affymetrix

500K” or ”Illumina HiSeq 2000”. This allows researchers to find data

appropriate for their (meta-)analysis amongst the petabytes of deposited

files based on biological-, laboratory- and digital provenance.

Hybrid solutions for large data queries

Combining relational and file-based storage can also be an effective

solution. The applications developed based on the XGAP data model,

such as WormQTLHD, employ a hybrid file-relation storage strategy.
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The rows and columns link to entries in a relational database, such as

Markers and Genes, which can be queried as usual, while the large data

in matrix form are stored as a two-dimensionally indexed binary file.

Using the query results, data selections from the matrix based on rows

and columns can be made very quickly.

The result of this hybrid design is great performance with mini-

mal overhead and disk space requirements, but its drawback is that

sorting and filtering operations on non-indexed matrix values are slow.

These queries are however not important for the main use-cases of this

database, so the overall solution worked out very well. This shows that

no solution is perfect, but the success of a system does depend on the

storage strategy chosen.

Basic data management training for all life science researchers

We have shown many different models, methods and tools to manage

life science data, from relational databases with static and dynamic

models to relational-file hybrids and file-catalogue systems. There is

no single “best” solution: each of these approaches represents a valid

solution for different storage and query requirements, which just un-

derscores the need for flexible systems that can adapt to future data

structure needs and switch to storage backends that scale to bigger data

volumes when required.

However, the average researcher has little interest in the technical

background of these solutions and simply wants a system that capable

of serious data management that is still as comfortable to use as a

spreadsheet program. Making the transition requires an investment of

time and energy that is sometimes not well understood and/or seen as

too burdensome. Parties that offer data management solutions may

have a responsibility to underscore the importance of helping people

to use better data management. We suggest number of actions to

facilitate the uptake of better data management tools in Box 3.
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Box 3: Actions towards uptake of better data management tools

1. Raising awareness of the dangers and limitations of using

spreadsheets and other inappropriate solutions for data

management. This is also the mission of the European

Spreadsheet Risks Interest Groupa.

2. Increasing the visibility of alternatives by shifting the focus

of publications, workshops and presentations from specific

applications back towards the importance of underlying

technologies such as the MOLGENIS platform.

3. Making demonstrations publicly usable in an unrestricted

but private way to those who are interested. Subsequently,

non-technical users should be able to immediately create

secure instances in the cloud suitable for sensitive data.

For technical users, it should be simply to run the software

on their own servers.

4. To keep initial interest alive, the thresholds of starting to

use these applications must be as low as possible. Data

management should be user-friendly overall, but it is criti-

cal that systems be fault-tolerant so aspiring users are not

punished by having to fix many small mistakes when im-

porting their data. Data should also be importable in the

simplest of formats and even via direct entry, i.e. similar

to using spreadsheet software.

5. Those exploring the system more deeply must experi-

ence clear benefits and advantages. For instance, a user-

friendly data explorer should offer powerful options to find,

filter, sort and plot the data, as well as guarantee consis-

tency, security and easy sharing with colleagues.

awww.eusprig.org
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8.1.4 Future perspectives of sharing life science data

The life science and molecular medicine community is gathering, using

and sharing tremendous amounts of data. Popular published data re-

sources include the Genome of the Netherlands[244], ArrayExpress[298],

1000 Genomes Project[18], VariBench[239], Blood eQTL browser[364],

database of Genotypes and Phenotypes[216], ClinVar[190], Exome Ag-

gregation Consortium[196], genome Aggregation Database3, RNA-seq

ASE browser[78], European Nucleotide Archive[195] and Genotype-Tis-

sue Expression[213]. Making these data open and freely available gen-

erates a higher number of citations and increases their overall prestige,

which should clearly outweigh any benefits of ’keeping data to yourself’.

Further, an increasing number of (often high-impact) scientific journals

and public funding bodies require any data in publications to be openly

accessible (the ideal) or at least available on request. In fact, it is now

possible to publish data as standalone resources, for example in jour-

nals such as Scientific Data or initiatives such as DataCite. The field

of genetics is indeed a frontrunner ”whose sharing of data markedly

accelerated progress”[297] compared to fields such as clinical trials.

Indeed, we ourselves opened up dozens of research datasets and

results in the WormQTLHD database, free to download without re-

strictions for anyone interested . Conversely, the methods presented in

chapter 5, the CADD scores for MMR genes, and GAVIN in chapter

6, could not have been developed without free and publicly available

datasets.

New query options are needed for humans and computers

While incredible datasets are currently being generated, the develop-

ment of software tools to interact with these data seems to be lagging

behind. Even relatively simple questions such as ”How many variants

at exon 10 of the TTN gene are exclusive for individuals of Asian de-

3http://gnomad.broadinstitute.org/
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scent?” cannot easily be asked because (i) most resources do not have

an adequate query interface, (ii) query interfaces do not understand or

support the question, and (iii) there is no cross-database ”Google-like”

interface to query all potential sources at once. We could fulfill the

promise of systems biology research to create understanding of life in

a bigger context by being able to routinely run deep complex queries

across our complete knowledge of organisms, phenotypes, populations,

tissues, metabolites, genetics, drugs, and so on.

Ontologies, semantics and FAIR solutions

This situation can be improved by increased usage of ontologies. Data

may be expressed as nanopublications, i.e. predicated relationships be-

tween two ontological concepts with provenance attached. For example,

we can express knowledge into formal terms as follows: the CENPJ gene

(http://bio2rdf.org/geneid:55835) has a statistical associa-

tion (http://semanticscience.org/resource/SIO_00076

5.rdf) to Seckel Syndrome (http://bio2rdf.org/omim:2106

00) of 0.000065624. Data can be freely reasoned upon once expressed

in a formal and semantic way, as demonstrated in case studies[233].

The underlying RDF[218] (Resource Description Framework, a way to

semantically describe data) and SPARQL[1] (Simple Protocol And RDF

Query Language, a way to question semantic data) technologies are sup-

ported by the Linked Data initiative5, which aims to connect structured

data on the internet, essentially turning it into a giant database. It

has also been shown that semantic queries can indeed be used for both

generating and evaluating hypotheses[233, 47], and assist in genomic

variant prioritization[33].

Although some large organizations offer proper RDF access[174] and

third-party tools are written for others[13], this technology is hardly a

cornerstone of modern life science databases. It can be quite labor-

4Example taken from: http://nanopub.org/wordpress/?page_id=57.
5http://linkeddata.org
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intensive to completely ontologize a database for RDF support and set-

ting up an active SPARQL endpoint. The FAIR principles[366, 368] offer

an alternative with much lower barriers. FAIR is essentially a checklist to

guide technical solutions and their practical applications to make data

more Findable, Accessible, Interoperable and Reusable. When fully real-

ized, every aspect of data would be annotated with semantic metadata

for complete and seamless reusability. The MOLGENIS/XGAP work

presented in this thesis are in that sense FAIR systems, created before

that term was coined.

Given the challenges of building and using datamodel based storage

systems this is not always attainable. However, the guidelines can be

followed to make data discoverable and searchable in simpler ways,

which is always better than not at all. An example of an easy and

lightweight solution to make resources better findable by search engines

is to add Bioschemas6 semantic markup. Other databases, platforms

and initiatives such as Dataverse[70], FAIRDOM[373], ISA[301] and

Open PHACTS[144] showcase other implementations and applications

that are based on FAIR principles.

Federated queries require an attitude shift

In addition to new data models and tools, I think we also need to

change our attitude towards sharing and integration of query results.

Data sizes are rapidly increasing and much data is privacy sensitive,

factors that make it unlikely that all data relevant to a given study will

always be available in one place. New data analysis paradigms are being

developed to address this, of which so-called ’federated analysis’, is a

prominent example[118, 169]. A federated query is executed on multiple

independent locations, after which the partial results are combined into

the final answer. The nature of federated queries on multiple external

sources is that the answer of today may be different from the answer of

tomorrow. This can be seen as a limitation, but can also be considered

6http://bioschemas.org
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an opportunity where researchers and even clinicians always have access

to the latest and greatest knowledge. Instead of statically versioning

complete data sources as a reference point, we must consider making

our data dynamic and compensate for perceived uncertainties by storing

the questions together with detailed data and source provenance used

to compile the answer.

Legal aspects of data sharing

Until here I have discussed life science data sharing from a mostly tech-

nical point of view. It is however important to realize that even the

most brilliant solution is pointless if the law precludes sharing and reuse

of data.

Currently, data and privacy laws are being revised in light of social

media and the other ’tech giants’ who are gathering massive amounts

of sensitive user data. While citizens will benefit from better privacy

protection, the same rules impede cohort-based biomedical research by

requiring participant re-consent every time the data is used[2].

While scientific representatives are gaining concessions on behalf

of research, their legal struggle is not yet over. Establishing fitting

international legislation with many stakeholders across cultural barriers

is difficult, as is the practical implementation of new rules by the science

community[209].

Perhaps by overcoming these legal growing pains, current hindrances

for sharing and reusing biomedical data across the international com-

munity can be lifted, benefitting researchers and ultimately patients.

8.2 Developing computational methods for

medical genetics

So far I have investigated models to store, access, share and query data

measured and calculated in life science experiments to gain new insights.
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In this section, I discuss challenges and solutions in the development

and, more importantly, validation of new methods and algorithms to

make most use of all these new data.

Key question and points of this section

How can we develop, characterize, find, share and reuse high-quality

computational methods as part of new analysis protocols for medical

genetics?

Key points

• The performance of newly developed methods depends on

both the quality and quantity of available data. We must

therefore cherish and share gold standard data (8.2.1).

• Reporting the strengths and weaknesses of a method in

greater detail next to the overall performance is crucial

for choosing the right analysis method to obtain better

research or diagnostic results (8.2.2).

• We need detailed catalogs where researchers and clinicians

can seamlessly find these assessments (8.2.3) and run the

right tool for their data and hypothesis (8.2.4).

8.2.1 Method dependance on high quality data

The genome of an average person contains around 5,000 unique mu-

tations[355]. To establish a molecular diagnosis in an individual with

a suspected genetic problem, we need to quickly reduce the number of

candidate variants from thousands to just a few. Computer algorithms

can predict how harmful mutations are, but the strength of these pre-

dictions depends on the availability and quality of reference data. These
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gold standard reference data are used to develop new algorithms, which

are then validated on a similar but independent data set.

In this section we show that both quality and quantity of data have

an effect on the predictive power of new methods. Sharing data is

therefore crucial for developing the best possible tools, resulting in more

accurate prioritization and less time spent on manual assessment. We

therefore must engage in active international collaboration to set up

systems for joint interpretation and open sharing of variants. To ac-

complish this goal we need to overcome technical and legal barriers,

but it is also a social challenge, as labs can be distrustful of other labs

that operate under different guidelines or less stringent quality stan-

dards.

CADD and GAVIN

CADD scores[185] are a promising method to estimate pathogenicity of

any mutation in the genome. We calibrated CADD in silico pathogenic-

ity estimates to help classification of mismatch repair gene variants in

chapter 5. We used variants assessed by an international committee of

domain experts to establish the relationship between CADD scores and

classification outcome. This was very successful, and this success was

helped by the outstanding quality of the reference data set we used.

Re-application of this model to the original data showed only a few

discrepancies, and they could all be explained in favor of the original

human expert classification.

This work was followed up in chapter 6 where we present the GAVIN

variant classification tool for >3,000 clinical genes. Interestingly, we

found that CADD-based predictions work better for some genes than

for others. This may be explained by currently unknown biological dif-

ferences that are not captured in the in silico pathogenicity estimates

we used, however a simpler explanation is that the expert variant clas-

sifications were of lower quality for certain genes, and those mistakes

distorted the calibration. We have already shown that for genes with
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enough training data we get better classification accuracy than we do

for genes for which scarce data is available, but here we can investigate

the relationship of both quantity and quality of gold-standard data with

calibration success in more detail.

Association of p-value with variant quantity and quality

The GAVIN gene calibrations include a Mann-Whitney U test p-value for

the tested significance of the CADD score difference between pathogenic

and matching benign variants. The lower a p-value for a gene, the more

reliable and useful the gene calibration becomes for automated variant

classification. These gene calibration p-values can be plotted against

the number of expert-assessed pathogenic variants available per gene.

For this we used the ClinVar variant summary.txt file of 1/12/2016,

downloaded from ftp://ftp.ncbi.nlm.nih.gov/pub/clinv

ar). The result can be seen in Figure 8.3. Indeed, a simple log-linear

model shows a trend in which gene p-values become more significant

as the quantity of available variant classifications increases.

To measure variant interpretation quality, we can use the review

status of ClinVar variants. The review status shows the amount of

supporting evidence for the clinical significance (i.e. classification) of

a variant. The text values also correspond to a ’star’ rating from 0

to 4 (see Table 8.1 on how the terms are mapped), which can be

used quantitatively. We can take the mean of this rating per gene as

a measure for interpretation quality. When plotted against the gene

calibration p-values (Figure 8.4), there is a trend in which gene p-

values become more significant as the quality of variant classifications

increases.

Both trends seem to indicate that both quality and quantity of data

are important when developing new methods based on previous ob-

servations to help us interpret unprecedented amounts of new data.

Therefore, we need to treasure the results of expert interpretation and

analysis that has been made freely available, but at the same time put
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Figure 8.3: Relation between calibration success and the number of

pathogenic variants available for that gene. Log10 linear regression (shown in

red) resulted in R2 = 0.11 and p-value = 7.28e-57.
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ClinVar review status ’Star’ rating

No assertion provided 0

No assertion criteria provided 0

No assertion for the individual variant 0

Criteria provided, single submitter 1

Criteria provided, conflicting interpretations 1

Criteria provided, multiple submitters, no conflicts 2

Reviewed by expert panel 3

Practice guideline 4

Table 8.1: ClinVar review status and how this translates to a numeric range,

i.e. the corresponding review status ’star’ rating. See https://www.ncbi

.nlm.nih.gov/clinvar/docs/variation_report

more effort into integration and ’FAIR-ification’ of the many sources

to achieve the best and most complete reference set possible[40] for

human health and disease. This need will become more pressing as the

amount of data grows quickly, and the upcoming demand for power-

ful methods that can deal with new diagnostic data modalities such as

non-coding DNA, RNA-sequencing, metabolomics and epigenomics.

8.2.2 Benchmarking and characterization of methods

While overall performance is a good metric to judge a method’s abil-

ity to screen a large set non-specific data, for specific data we should

characterize a method in more detail. In order for methods to become

trusted and accepted by users such as clinical geneticists, they must

know how well a method behaves and if it succeeds in situations they

are familiar with.

A good example is our analysis of CADD scores for MMR genes in

chapter 5, where we delved into the strengths and limitations of this

method when applied to four specific genes. Developing a new method

as a black box, with just an overall reported accuracy (e.g. ”93% AUC”)
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Figure 8.4: Relation between calibration success and the average review

quality for that gene. Log10 linear regression (shown in red) resulted in R2 =

0.03 and p-value = 5.95e-16.
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may lead to some skepticism from those using the methods in practice,

especially since most methods claim to be the best. Instead we should

characterize and report the strengths and limitations of a method, and

communicate clearly that method performance may depend on the con-

text it is used in.

The GAVIN gene calibrations in chapter 6 are reported in categories

where ’C1’ indicates a high degree of separation between pathogenic and

benign variants and ’C4’ indicates a poor separation. These indications

show that classifications in certain genes are better than in others, even

though the overall performance is high. Reporting the performance on

a gene-level helps researchers or clinicians to select the best method for

their specific question.

It must be noted that GAVIN reports no formal information beyond

the gene level, and that there are indeed instances where more sophis-

ticated definitions are beneficial. We will now show three examples of

genes where in-depth characterization is indeed relevant and how this

may lead to tailored or optimized usage.

Examples of in-depth gene characterization

The gene SCN5A, which encodes sodium channel type V and is asso-

ciated to dominant atrial fibrillation/long QT syndrome, is an example

where there is a high degree of separation and an overall great calibra-

tion. However, notice the cluster of pathogenic variants around location

38655000 that dips below the calibration line in Figure 8.5. This gene-

specific model may be improved by local correction of the threshold for

this effect.

In the gene TTN, which encodes the protein titin and is associated

to dominant cardiomyopathy, this effect is far more pronounced with a

massive cluster of extremely high score pathogenic variants in the first

30% of the gene. See Figure 8.6. The remaining pathogenic variants

appear to be distributed amongst the benign variants, making a poten-

tial two-part model perhaps complicated, but much more powerful.
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An example where the method offers little predictive value is the

gene F11, which is associated to blood coagulation factor XI deficiency

and is often recessive. The benign variants that remain after the fil-

tering stage of GAVIN calibration are distributed uniformly across the

pathogenic variants as can be seen in Figure 8.7. A simple explana-

tion of this might be that this is a relatively mild and recessive disorder

under apparently little selective pressure, which is consistent with it be-

ing relatively common among Ashkenazi Jews[305]. What this example

shows is that some pathogenic variants seem to be quite tolerated in the

general population, blurring the line between ’benign’ and ’pathogenic’,

therefore deleteriousness may be hard to estimate computationally.

Implications of method characterization

These examples illustrate the advantages and limitations of a gene-

based variant classification method. This characterization will also ap-

ply to other data modalities including gene expression and metabolites

and across different conditions such as tissue type, cell types, age, and

ethnicity. If we want to develop methods that bring these new types of

information to the clinic, we must have transparent and widely accepted

validation procedures and be clear on what methods can and cannot do,

to prevent disappointed users. The context for which the tool has been

developed, as well as its strengths and weaknesses, should be made

clear even on a gene-specific level because this knowledge may be more

important than the overall performance of the method. I think it may

be worthwhile to create a truly standardized benchmark to assess and

compare the methods currently available as well as those that will be

developed in the future.

8.2.3 Finding appropriate methods in repositories

The sequencing of thousands of patients and healthy individuals world-

wide, combined with the sequenced genomes from thousands of differ-

ent organisms, has spurred the development of countless methods that
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predict variant pathogenicity, mostly based on estimated protein con-

servation. Examples of various scope and quality include: SIFT[187],

PolyPhen2[5], PROVEAN[59], PON-P2[241], MutationAssessor[287],

FATHMM-MKL[308], Condel[129], PhyloP[271], UMD-Predictor[109],

Grantham[131], ENTPRISE[386], PHAST[388], FitCons[136], Mut-

Pred[199], EIGEN[160], GERP++[76], VAAST[181], AlignGVGD[333],

MAPP[334], MutationTaster[304], VIPUR[22], REVEL[159], CADD[185],

LINSIGHT[155], FATHMM-XF[296] and GAVIN[345]. These tools are

being improved and invented in a fast competitive cycle as more bench-

mark data becomes available every day due to the interpretation help

of the previous tool generation.

Similarly, thousands of methods for all kinds of applications, analyses

and data types have been created across all branches of life sciences.

However, for a researcher at the beginning of a project, the question

remains: How do I find the best methods for my analysis question?

Search engines to find methods such as OmicsTools7 have emerged

to let users find methods of interest. In OmicsTools, users can browse

methods via search box or by drilling down in categories. Users can also

post reviews and rating to let others know how well they liked the tool.

OmicsTools does not, however, allow more fine-grained searches that

can:

• Find tools that are applicable to your data, e.g. quickly finding

which analyses can be run on your data.

• Find tools that produce a specific type of output, e.g. if you are

interested in a specific type of output such as gene annotations

and want to list any tools that can provide this.

• Find tools that perform a specific role, e.g. when you want to

benchmark your method to any tool that performs the same func-

tion regardless of input or output.

7https://omictools.com, currently hosting >17,000 entries
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The Elixir Tools and Data Services Registry[163]8 tries to solve this

issue by attaching EDAM[162] ontology terms to the function, topic,

inputs and outputs of each method. Tags, documentation, publication,

links and contact information are also provided, together forming a com-

prehensive and highly structured collection of bioinformatics software.

These solutions are a step in the right direction, but they do not

address two major needs: (i) providing a standardized and detailed

benchmark of tool performance (as discussed earlier) and (ii) helping

the user to install and run the tool of interest. Therefore, there is still

a duty for the bioinformatics community to create a central repository

of documented, tested and runnable bioinformatics tools, in the same

spirit as e.g. the CRAN repository for R packages.

8.2.4 Integrating and running methods for evaluation

Evaluating new tools in practice requires a quick process of installation

and running. This is difficult for methods that can not be offered as web

services due to transfer limitations or patient confidentiality, and must

therefore be compiled or installed locally and subsequently integrated

into an analysis protocol. BioContainers[72] solve some of these issues

by wrapping individual tools in container engines (Docker and rkt). The

tools retain their identity while being easier to run cross-platform.

The fast uptake of methods is much easier and quicker when they

are wrapped or created for an existing workflow engine. MOLGENIS

Compute protocols9 and Galaxy tools10 are method libraries for their

respective workflow engines that come with descriptions and technical

definitions for their inputs and outputs. Taverna[372] workflows can be

constructed and shared on MyExperiment[127]11 using components12

8https://bio.tools
9https://github.com/molgenis/NGS DNA/tree/master/protocols

10https://toolshed.g2.bx.psu.edu/
11https://www.myexperiment.org
12http://www.taverna.org.uk/documentation/taverna-2-x/components/

224

https://bio.tools
https://www.myexperiment.org


1

2

3

4

5

6

7

8

8.2. TOWARDS BETTER SYSTEMS FOR (GEN)OMIC MEDICINE

that can be linked to ontological terms for their input, output and

activity.

However, there does not seem to be much emphasis on semantic

description of workflow engine components in general. Taverna com-

ponents can only be published within the definitions of conventional

workflows, making them difficult to find. Methods wrapped for Com-

pute and Galaxy do not explicitly link to ontologies at all.

These limitations were recognized and addressed by the BioMOBY

method and its successor SADI[367, 370]. SADI is a method to set up

discoverable semantic web services from regular databases, and has a

Taverna plugin to access these services. Unfortunately this project has

been silent since 2014 and the plugin is only available for the outdated

Taverna versions 2.1.2 and 2.2 (current version is 2.5).

Taken together, we find many great initiatives that collect, describe

and offer methods focused on different aspects. Unfortunately there is

currently no standardized complete solution that allows a user to seam-

lessly discover, run and integrate methods into their analysis workflows.

There is a growing focus on the FAIR principles to make data

reusable, but the exact same principles should also apply to tools. I

think we should treat tools as ’runnable data’, meaning that they must

be as easy to find, understand and use as data itself. In practice, the

most popular tools are simply those that are easily runnable, and these

are not necessarily the best at what they do. By applying FAIR prin-

ciples to remove some of the barriers to use, we could exchange and

adopt more appropriate tools to the tasks at hand.

8.3 Towards better systems for (gen)omic

medicine

Thus far I have discussed models to store, manage, share and query life

science data in smarter and better ways. I then looked at the challenges

of developing, characterizing and discovering new methods. In this
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section I focus on challenges and solutions in translating new data and

methods to health research and patient care. Note that the terminology

used in this section can be confusing and is therefore explained in Box

4.

Box 4: Clarification of terminology

In a typical data processing scenario, multiple tools or methods

are connected in a workflow, also called a pipeline, which is a

sequence of events through which data is processed to reach

a final state. A workflow that has been formalized into an of-

ficial procedure that is agreed upon and usually versioned is

what we call a protocol. The steps within a protocol can be

implemented using different tools for each step, where tools

are implementations of methods. Lastly, a system is a piece of

software that executes workflows or protocols and manages their

inputs, tools, outputs, provenance and other related data. Some

of these terms are used interchangeably when context allows it,

for instance, workflow and protocol are in often in practice not

that different.

Key question and points of this section

How can we bring data and methods together in flexible and scalable

multi-omics analysis protocols and software systems for future patient

care?
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Key points

• There is a plethora of academic and commercial software

for DNA analysis, but their protocols and data sources are

quite static (8.3.1).

• Workflow engines offer greater flexibility for data process-

ing and are far more future-proof, but the use of a common

language must be encouraged (8.3.1).

• Protocol implementations of best practice guidelines

should be a community effort including common auto-

mated benchmarking and validation (8.3.2).

• As multi-omics analysis starts to complement routine

DNA diagnostics, experts from the disciplines involved will

need to contribute their best practices in a combined ap-

proach (8.3.3).

• To keep multi-omics diagnostic protocols up-to-date, we

should consider using smart workflows with abstract step

definitions that automatically select the best or most ap-

propriate tools for the job (8.3.4).

8.3.1 Reusable and flexible DNA analysis workflows

Since DNA sequencing has become popular, plenty of integrated sys-

tems have been developed that cover complete genome analysis work-

flows. Commercial examples include products such as Alamut13, SeqPi-

13http://www.interactive-biosoftware.com
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lot14, Omicia15, Sophia16, NextBio17, Cartagenia18, MedGenome19,

VariantStudio20, GoldenHelix21, Ingenuity22, Bina23, Enlis24 and Geno-

matix25. Alternatives developed in academia, often free to use, include

SpeedSeq[58], GEMINI[253], InterVar[202], Genomiser[313], eXtasy[309],

VAAST[181], SG-ADVISER[262], IMPACT, SeqMule[137], TAPERTM

[126], ClinLabGeneticist[357], WGSA[211] and wANNOVAR[53]. These

systems are quite specific for the types of data and questions they can

handle. Either they offer a built-in analysis or they allow the user to

select which of the preconfigured data and filters should be used. While

these products may perform their function well, the lack of freedom can

be a serious restriction. The GAVIN+ tool presented in chapter 7 is

guilty of the same, although it is part of a bigger genome interpretation

framework with options for customization and tool replacement.

With many new sources of data, knowledge and tools are quickly

becoming available, typical genomics analysis software cannot keep up

with the demand for the latest and greatest developments, let alone

support integrating completely new data modalities such as RNA-seq,

metabolomics and epigenetics. Switching to different software or adopt-

ing multiple tools to use the best features of each is time consuming

and expensive, while using an incomplete solution means missing out

on the best research results or diagnostic answers.

14http://www.jsi-medisys.de
15https://www.omicia.com
16http://www.sophiagenetics.com
17https://www.nextbio.com
18http://www.agilent.com
19https://www.medgenome.com
20http://variantstudio.software.illumina.com
21http://goldenhelix.com/
22https://www.qiagenbioinformatics.com
23http://www.bina.com
24https://www.enlis.com
25https://www.genomatix.de
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Workflow engines, a better way?

Workflow engines offer part of the solution to these issues. They are a

type of software not tied to specific data types or analysis protocols, but

instead offering the flexibility of letting users define and share their own

analyses. Examples include Galaxy[128], Taverna[372], Anduril[249],

UGENE[245], GenePattern[284], VisTrails[23], Arvados26, AWE, Toil,

Rabix and MOLGENIS Compute[43]. In these software the user has

full control and freedom over analysis steps such as choosing which

tool and data dependencies are used. A user can, for instance, choose

GATK[344] for genotype calling then subsequently choose PLINK[277]

for association analysis. The flexibility originates from using simple

tool input/output structures that are typically file based. This agnostic

approach to handling data makes it easy to hook up new tools and file

formats. Due of their adaptability these solutions are more future-proof

than software shipped with built-in analyses. However, the graphical

user interfaces of workflow engines, if present at all, are not optimized

towards a domain-specific task, and this may deter users who are used

to hand-designed interfaces. These generic workflow engines are often

quite technical to use and have therefore not caught on in mainstream

molecular diagnostics.

Another issue is that workflows are usually created for a specific

workflow engine, making cross-platform reuse harder or impossible. This

leads to reimplementation of workflows for different engines, which costs

time that could have been spent improving the already existing work-

flow. Some relief is on the horizon in efforts such as the Common

Workflow Language[10] (CWL) that encourage the use of a cross-engine

language to define workflows, and CWL is currently supported by 9

different workflow engines. I believe that uptake of one standard by

the community would enable sharing and collaborative improvements

of workflows. In addition, easier and more customizable user interfaces

could make them more popular with non-technical users in clinical ap-

26https://arvados.org
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plication. Whether the standard exchange format should become CWL

or something else is up for debate, but any standard here would surely

further boost this field to innovate and collaborate around it, which

is what we have seen happen with the VCF format that has been an

incredible catalyst for variant data exchange and common usage across

tools.

8.3.2 Community sharing of protocols and expertise

Medical centers that perform molecular diagnostics use national or in-

ternational guidelines to implement their protocols for the interpreta-

tion of DNA variants. Examples include guidelines established by clini-

cal genetics associations in the Netherlands[242], United Kingdom[353]

and United States[288]. The guidelines are implemented by configur-

ing existing software, for instance by running an automated MAF filter

followed by manual interpretation that may assign ’likely pathogenic’

status to a private stopgain variant with PolyPhen verdict ’damaging’.

While these guidelines are established and agreed upon by experts, their

implementation and validation is typically not shared amongst centers.

This is a pity because sharing of expertise with an international commu-

nity would reduce redundant work and increase quality of results. We

should therefore unlock the knowledge that is now kept in the protocols

of local configurations or precompiled software.

Luckily, many of these protocols consist of objective interpretation

criteria that can be turned into automated workflows, and these are

easier to share. The recently published InterVar[202] tool, for example,

has implemented the ACMG 2015 guideline in a Python script. Au-

tomated analysis workflows created by experts can also be shared via

initiatives that support communities such as MyExperiment[127]. By

using a common language to describe these workflows we can try work

towards an interactive online catalog of best practice workflows main-

tained by the international genetics community. In open collaborative

development these protocols can be updated, amended, expanded or
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merged as our insight and resources increase, leading to higher qual-

ity guidelines and best practices. This will increase sharing of specific

expertise and lessons learned, in addition to preventing duplicate imple-

mentation and validation efforts.

The genomics platform in chapter 7 proposes implementation of an

automated interpretation protocol based on a template connected by

existing and sharable formats that allows modularity and reuse of in-

dividual components. It features built-in methods and gold standard

data for automated validation, and benchmarking that can be applied

in any new implementation of the protocol to verify that the perfor-

mance is still the same, or has changed. The automated re-validation

of interpretation workflows also drives innovations as added value of en-

hancements can be objectively proven and mistakes avoided with very

little effort, and I think this is a subject where much can be gained that

will allow genome diagnostics to scale up for future needs. The concept

of sharing tools, templates and validation strategies gives centers many

options to exchange best practices and benchmarking tools that can be

reused fully or in part.

8.3.3 Towards integrated multi-omics analyses

Life science research and healthcare is starting to complement the se-

quencing of genes with new data modalities such as non-coding DNA

and RNA expression. A number of efforts have shown great poten-

tial for moving past ’DNA only’ analyses, as demonstrated by stud-

ies that integrate multiple omics layers to better understand human

health[272]. Following these experiments, new computational methods

such as REMM scores[313] for estimating variant pathogenicity in non-

coding DNA are being developed to leverage wet laboratory advances

into new high-throughput tools. An brief overview of the current state

and diagnostic potential use of various omics data types can be found

in Table 8.2.

Using all these omics data modalities in an integral way requires
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flexible databases and tool systems. But, more importantly, it also re-

quires best-practice data processing protocols to be shared by experts.

An inspiring example of multi-omics bioinformatics that turned funda-

mental research into clinical practice is the discovery of the PCSK9

gene. In this case a combination of identification of protective alleles,

classical family studies, discovery of cellular pathways using model or-

ganisms, metabolic measurements and gene sequencing led to discovery

of a drug target[3] that is now successfully used in clinics[94].

Studies that are focused on a particular molecular mechanism can

afford to manually integrate relevant data and run additional exper-

iments to complete the puzzle[261]. For routine use of multi-omics,

such as in diagnostics offered to thousands of patients, we need a more

systematic and automated approach.

While better databases for multi-omics data are emerging, our omics

data integration methods lag behind. The usual strategy in data inte-

gration for DNA analysis is using software that glues data together,

where all the complex logic to the join data resides within the soft-

ware and the data itself is agnostic. For example, we have implemented

’annotators’, which enrich genomic variants with information such as

allele frequencies, pathogenicity scores and transcript annotations[345].

There are many such annotation tools[100], integration platforms[257]

and precompiled annotation sources[210], all of these can have notable

differences[223] but all generally work reasonably well for this purpose.

Moving the ’smartness’ from tools to the data

The problem is that for every new application of the data, or new data

source that needs to be integrated, the community needs to develop

and maintain new software. This means that the programming logic for

integrating specific sources is re-implemented many times, with prob-

lems and limitations in each separate implementation. This will become

a serious issue when moving from DNA alone to 10+ omics data layers

in the future. Developing the ultimate tool that can handle all omics
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Molecular

assessment

Application as diagnostic technique

Coding DNA

sequencing

Commonly used technique with a yield that varies

from 30% for difficult cases[348] to 60% as a first

line tool[232].

Non-coding

DNA

sequencing

Methods are currently emerging[313, 138] based

on known non-coding pathogenic variants located

in promotors, enhancers, 5’UTR, 3’UTR, RNA

genes and topological domains[81].

RNA

sequencing

Powerful complement to DNA sequencing that can

to detect aberrant expression levels, gene fusion,

allele specific expression, expressed lncRNA and

viral DNA[78, 44, 318, 186, 71].

Epigenetics

profiling

Methylation profiling is now limited to cancer but

may soon be applied to neurological and

autoimmune disorders[151]. Histone modification

is assessed in colorectal cancer[116].

Microbiome

metagenomic

sequencing

May soon be used in diagnosis and treatment of

bowel related disorders[279] in combination with

host genome[32].

Metabolomics A reliable technique[149] to screen for 900

compounds[231] but is currently limited to 80

inborn errors of metabolism and other metabolic

disorders[130].

Proteomics Though mass spectrometry provides

high-throughput potential[143] and there are

proteomic cancer biomarkers[113], uncertainties

and difficulties need to be resolved for diagnostic

use[135].

Table 8.2: Brief review of different omics data types and how they are

currently used, or could be used, for diagnostic applications.
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data perfectly is a pipe dream, but there is an alternative.

I believe we should make the data itself ’smarter’, i.e. more self-

aware of what it is, through semantic (meta)data enrichment - while the

software can be made ’dumber’, only knowing how to process standard-

ized definitions and rules, unaware of arbitrary details of the underlying

data sources. By keeping the meaning of the data contained within it-

self, it would be much simpler to connect datasets to each other without

the need for complicated software. Generic software to facilitate data

integration is better suited for community-driven development, shared

usage, higher code quality and future updates. It also saves the time

that would otherwise be spent building and maintaining multiple imple-

mentations that do the same work.

8.3.4 Future work on semantic analysis systems

So far I have discussed ways to standardize workflows, to share protocols

and validation tools, and to use semantics to better integrate data

within complex analyses. The challenge of data integration also applies

to organizing tools, protocols and systems created thereof. It therefore

makes sense to extend the use of semantics to these factors as well.

We propose a protocol template in chapter 7 but, while it has been

implemented, the template itself is not formally defined. If we would

do this, a logical choice would be to express the protocol as a series of

semantic concepts such as ”annotating”, ”reporting”, ”validation”, and

so on. This would allow these components to be swapped out for tools

with the same definition, assuming there are no further compatibility

issues. In effect, we would have parameterized the choice of method

for each step and could offer the user a selection of matching tools

that can fulfill that step. A validation procedure for that step can

be implemented, automated and shared, enabling fast and objective

comparisons between variations.

Similarly, the complete protocols may be semantically annotated

to perform a role that complements another protocol. For example, a
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”variant calling” protocol may be seamlessly connected to a ”diagnostic

interpretation” protocol. Other protocols that use ”variant calling”

as input may be downloaded and executed on the fly for maximum

flexibility. How all these components could now interact is illustrated

in Figure 8.8.

Disconnecting tools and data from the protocols allows for designing

and sharing of protocols without simultaneously dealing with implemen-

tation details, and prevents new protocols from having to be defined

when a better tool that performs the same role is introduced. When

we extend this concept to tools that retrieve their own source data via

semantic connection, the result is a moldable, future-proof workflow

that ships with built-in validation and benchmarking.

The results created by tools or workflows may be automatically an-

notated with the appropriate semantics and can be fed back into knowl-

edge repositories. For example, after running a chain of tools that leads

to variant classifications, an expert should be able to easily upload these

results and share them with the community. Such an approach helps

us get the most value out of human experts, as their knowledge and

decisions flow back into the system, catalyzing development of new and

improved tools.

An immediate challenge to implement this concept is finding a place

to keep the necessary tools, data and their metadata. There are central

repositories to help make patient mutations or sequencing reads meet

FAIR principles, but there is no such place for the results of computa-

tional analyses. While the model organism data in chapter 4 can be

found through the major community hub http://www.wormbase.

org, the data in chapter 6 is not so FAIR. Both the article and data

are free and open to the world, but the existence of the data set is

not explicitly advertised or registered on a community hub, limiting its

Findability. Bioinformaticians and computational biologists must put

more effort into placing their work in context with the original data,

and we need take responsibility as a community to create new means

of enabling this integration if there are no suitable solutions available.
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Figure 8.8: Overview of potential interplay between data, tools and proto-

cols, all mediated by semantic definitions. The resources are self-descriptive

and can be used in different scenarios by multiple disciplines in a synergistic

knowledge feedback loop.
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8.4 Conclusion

Each topic in this thesis is part of the same mission: to let patients

with genetic disorders benefit more from rapidly increasing biological

data production and new knowledge. More specifically, we want to

obtain predictors and biomarkers from research and patient data that

can quickly establish the best and earliest diagnosis or prognosis. To

achieve this goal, we integrated and make available big reference data

in chapters 2 and 3, bridged model organism to human data in chapter

4, translated generic methods into clinical applications in chapters 5

and 6, and developed a platform to bring innovations into practice in

chapter 7.

The resources currently available are already plentiful, and both the

amount and types of molecular life science data is growing at a tremen-

dous pace. This present us with incredible opportunities to develop

new and exciting methods that are more powerful and better tailored

to patients than ever before, but simultaneously introduces the huge

challenge of integrating and understanding these data. To keep up, we

must work smarter by investing in development and implementation of

techniques that bring data together and stimulate collaboration such

as FAIR principles, sharing platforms and semantic web. Our research,

development and hands-on experience of MOLGENIS flexible databases

with ontology annotation tools are ready to play a significant role here.

New molecular data modalities such as non-coding DNA, RNA ex-

pression and metabolic profiles are emerging, and corresponding tools

for clinical application will continuously improve as the quantity and

quality of gold standard data increases over time. To keep complex

multi-omics data pipelines manageable in practice, we need modu-

lar best practice workflows that have self-managing and self-validating

properties. With many methods available, and their strengths and limi-

tations characterized, the most appropriate tools could be automatically

selected to diagnose a patient with an individualized multi-biomarker

approach. The genomics platform that we are developing in combina-
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tion with the MOLGENIS Compute engine is being used in a diagnostic

setting already and should provide the flexibility to scale up and expand

to future technologies.

In the future, I envision a seamless international collaboration of

experts in an online community-based decision support system where

research data, gold standards, tools, workflows, benchmarks and best

practices may be shared freely and openly. This will increase the ef-

fectiveness of clinical molecular diagnostics at a maximum speed and

unlock the potential of all measurable omics data types. We can fur-

ther integrate these results with findings that may currently be difficult

to interpret such as risk factors from genome wide association studies,

effects in quantitative trait loci or allele-specific expression, changes in

the microbiome, epigenetic marks, or multigenic inheritance. Automat-

ically generated reports will then present prioritized findings and other

relevant insights along with any known limitations and uncertainties, so

researchers and doctors have clear and honest understanding of the re-

sults. Taken together, we will be able to translate the knowledge gained

from research data, expert communities and computational methods

into medical practice for fast, accurate and personalized patient care.
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standardized phenotype screens for functional annotation of the

mouse genome. Nature Genetics, 37(11):1155–1155, Nov 2005.

[42] Catherine A Brownstein, Alan H Beggs, Nils Homer, Barry Mer-

riman, Timothy W Yu, Katherine C Flannery, Elizabeth T DeCh-

ene, Meghan C Towne, Sarah K Savage, Emily N Price, and

244



BIBLIOGRAPHY

et al. An international effort towards developing standards for

best practices in analysis, interpretation and reporting of clini-

cal genome sequencing results in the clarity challenge. Genome

Biology, 15(3):R53, 2014.

[43] H. Byelas, M. Dijkstra, P. Neerincx, F. van Dijk, A. Kanterakis,

P. Deelen, and M. Swertz. Scaling bio-analyses from compu-

tational clusters to grids. Proceedings of the 5th International

Workshop on Science Gateways, Zurich, Switzerland, 2013.

[44] Sara A. Byron, Kendall R. Van Keuren-Jensen, David M. En-

gelthaler, John D. Carpten, and David W. Craig. Translating rna

sequencing into clinical diagnostics: opportunities and challenges.

Nature Reviews Genetics, 17(5):257–271, Mar 2016.

[45] Leonid Bystrykh, Ellen Weersing, Bert Dontje, Sue Sutton,

Mathew T Pletcher, Tim Wiltshire, Andrew I Su, Edo Vellenga,

Jintao Wang, Kenneth F Manly, and et al. Uncovering regulatory

pathways that affect hematopoietic stem cell function using “ge-

netical genomics”. Nature Genetics, 37(3):225–232, Feb 2005.

[46] Combined Annotation Dependent Depletion (CADD). Available:

http://cadd.gs.washington.edu/info. [accessed 1 oct 2015]. URL,

2015.

[47] Alison Callahan, Michel Dumontier, and Nigam H Shah. Hyque:

evaluating hypotheses using semantic web technologies. Journal

of Biomedical Semantics, 2(Suppl 2):S3, 2011.

[48] V. J. Carey, M. Morgan, S. Falcon, R. Lazarus, and R. Gentleman.

Ggtools: analysis of genetics of gene expression in bioconductor.

Bioinformatics, 23(4):522–523, Dec 2006.

[49] Christopher A. Cassa, Mark Y. Tong, and Daniel M. Jordan.

Large numbers of genetic variants considered to be pathogenic

245



BIBLIOGRAPHY

are common in asymptomatic individuals. Human Mutation,

34(9):1216–1220, Aug 2013.

[50] Christopher A Cassa, Donate Weghorn, Daniel J Balick, Daniel M

Jordan, David Nusinow, Kaitlin E Samocha, Anne O’Donnell-

Luria, Daniel G MacArthur, Mark J Daly, David R Beier, and

et al. Estimating the selective effects of heterozygous protein-

truncating variants from human exome data. Nature Genetics,

49(5):806–810, Apr 2017.

[51] Fabrice Caudron and Yves Barral. A super-assembly of whi3 en-

codes memory of deceptive encounters by single cells during yeast

courtship. Cell, 155(6):1244–1257, Dec 2013.

[52] Sohini Chakrabortee, James S. Byers, Sandra Jones, David M.

Garcia, Bhupinder Bhullar, Amelia Chang, Richard She, Laura

Lee, Brayon Fremin, Susan Lindquist, and et al. Intrinsically

disordered proteins drive emergence and inheritance of biological

traits. Cell, 167(2):369–381.e12, Oct 2016.

[53] Xiao Chang and Kai Wang. wannovar: annotating genetic vari-

ants for personal genomes via the web. Journal of Medical Ge-

netics, 49(7):433–436, Jun 2012.

[54] Rong Chen, Lisong Shi, Jörg Hakenberg, Brian Naughton, Pamela

Sklar, Jianguo Zhang, Hanlin Zhou, Lifeng Tian, Om Prakash,

Mathieu Lemire, and et al. Analysis of 589,306 genomes identi-

fies individuals resilient to severe mendelian childhood diseases.

Nature Biotechnology, 34(5):531–538, Apr 2016.

[55] Xiaoyu Chen, Ole Schulz-Trieglaff, Richard Shaw, Bret Barnes,

Felix Schlesinger, Morten Källberg, Anthony J. Cox, Semyon

Kruglyak, and Christopher T. Saunders. Manta: rapid detection

of structural variants and indels for germline and cancer sequenc-

ing applications. Bioinformatics, 32(8):1220–1222, Dec 2015.

246



BIBLIOGRAPHY

[56] Y.-C. Cheng, F.-C. Hsiao, E.-C. Yeh, W.-J. Lin, C.-Y. L. Tang, H.-

C. Tseng, H.-T. Wu, C.-K. Liu, C.-C. Chen, Y.-T. Chen, and et al.

Variowatch: providing large-scale and comprehensive annotations

on human genomic variants in the next generation sequencing era.

Nucleic Acids Research, 40(W1):W76–W81, May 2012.

[57] Elissa J Chesler, Lu Lu, Siming Shou, Yanhua Qu, Jing Gu, Jin-

tao Wang, Hui Chen Hsu, John D Mountz, Nicole E Baldwin,

Michael A Langston, and et al. Complex trait analysis of gene

expression uncovers polygenic and pleiotropic networks that mod-

ulate nervous system function. Nature Genetics, 37(3):233–242,

Feb 2005.

[58] Colby Chiang, Ryan M Layer, Gregory G Faust, Michael R Lind-

berg, David B Rose, Erik P Garrison, Gabor T Marth, Aaron R

Quinlan, and Ira M Hall. Speedseq: ultra-fast personal genome

analysis and interpretation. Nature Methods, 12(10):966–968,

Aug 2015.

[59] Yongwook Choi, Gregory E. Sims, Sean Murphy, Jason R. Miller,

and Agnes P. Chan. Predicting the functional effect of amino acid

substitutions and indels. PLoS ONE, 7(10):e46688, Oct 2012.

[60] Pablo Cingolani, Adrian Platts, Le Lily Wang, Melissa Coon, Tung

Nguyen, Luan Wang, Susan J. Land, Xiangyi Lu, and Douglas M.

Ruden. A program for annotating and predicting the effects of

single nucleotide polymorphisms, snpeff. Fly, 6(2):80–92, Apr

2012.

[61] W. R. Cnossen, R. H. M. te Morsche, A. Hoischen, C. Gilissen,

M. Chrispijn, H. Venselaar, S. Mehdi, C. Bergmann, J. A. Velt-

man, and J. P. H. Drenth. Whole-exome sequencing reveals lrp5

mutations and canonical wnt signaling associated with hepatic

cystogenesis. Proceedings of the National Academy of Sciences,

111(14):5343–5348, Mar 2014.

247



BIBLIOGRAPHY

[62] E. F. Codd. A relational model of data for large shared data

banks. Communications of the ACM, 13(6):377–387, Jun 1970.

[63] The 1000 Genomes Project Consortium. An integrated map

of genetic variation from 1,092 human genomes. Nature,

491(7422):56–65, Oct 2012.

[64] CASIMIR EU consortium for Coordination and Sustainabil-

ity of International Mouse Informatics Resources. Available:

http://www.casimir.org.uk. URL, 2010.

[65] GEN2PHEN EU consortium to unify human Genotype-To-

Phenotype databases. Available: http://www.gen2phen.org.

URL, 2010.

[66] David N. Cooper, Michael Krawczak, Constantin Polychronakos,

Chris Tyler-Smith, and Hildegard Kehrer-Sawatzki. Where geno-

type is not predictive of phenotype: towards an understanding

of the molecular basis of reduced penetrance in human inherited

disease. Human Genetics, 132(10):1077–1130, Jul 2013.

[67] Gregory M. Cooper. Parlez-vous vus? Genome Research,

25(10):1423–1426, Oct 2015.

[68] Gregory M. Cooper and Jay Shendure. Needles in stacks of nee-

dles: finding disease-causal variants in a wealth of genomic data.

Nature Reviews Genetics, 12(9):628–640, Aug 2011.

[69] Manuel Corpas, Willy Valdivia-Granda, Nazareth Torres, Bastian

Greshake, Alain Coletta, Alexej Knaus, Andrew P. Harrison, Mike

Cariaso, Federico Moran, Fiona Nielsen, and et al. Crowdsourced

direct-to-consumer genomic analysis of a family quartet. BMC

Genomics, 16(1), Nov 2015.
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Wang, Slavé Petrovski, William H. Majoros, Andrew S. Allen, and

David B. Goldstein. Orion: Detecting regions of the human non-

coding genome that are intolerant to variation using population

genetics. PLOS ONE, 12(8):e0181604, Aug 2017.

[139] E W Gutteling, A Doroszuk, J A G Riksen, Z Prokop, J Reszka,

and J E Kammenga. Environmental influence on the genetic

correlations between life-history traits in caenorhabditis elegans.

Heredity, 98(4):206–213, Jan 2007.

[140] E W Gutteling, J A G Riksen, J Bakker, and J E Kammenga. Map-

ping phenotypic plasticity and genotype–environment interactions

affecting life-history traits in caenorhabditis elegans. Heredity,

98(1):28–37, Sep 2006.
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Núñez-Fontarnau, Ville Rantanen, Sirkku Karinen, and et al.

Large-scale data integration framework provides a comprehensive

view on glioblastoma multiforme. Genome Medicine, 2(9):65,

2010.

[250] Brian D O’Connor, Allen Day, Scott Cain, Olivier Arnaiz, Linda

Sperling, and Lincoln D Stein. Gmodweb: a web framework

for the generic model organism database. Genome Biology,

9(6):R102, 2008.

[251] Srivatsan Padmanabhan, Arnab Mukhopadhyay, Sri Devi

Narasimhan, Gregory Tesz, Michael P. Czech, and Heidi A.

Tissenbaum. A pp2a regulatory subunit regulates c. elegans

insulin/igf-1 signaling by modulating akt-1 phosphorylation. Cell,

136(5):939–951, Mar 2009.

[252] P. Pagel, S. Kovac, M. Oesterheld, B. Brauner, I. Dunger-

Kaltenbach, G. Frishman, C. Montrone, P. Mark, V. Stumpflen,

H.-W. Mewes, and et al. The mips mammalian protein-protein

interaction database. Bioinformatics, 21(6):832–834, Nov 2004.

[253] Umadevi Paila, Brad A. Chapman, Rory Kirchner, and Aaron R.

Quinlan. Gemini: Integrative exploration of genetic varia-

tion and genome annotations. PLoS Computational Biology,

9(7):e1003153, Jul 2013.

274



BIBLIOGRAPHY

[254] Michael F. Palopoli, Matthew V. Rockman, Aye TinMaung, Cam-

den Ramsay, Stephen Curwen, Andrea Aduna, Jason Laurita, and

Leonid Kruglyak. Molecular basis of the copulatory plug polymor-

phism in caenorhabditis elegans. Nature, 454(7207):1019–1022,

Jul 2008.

[255] C. Pang, D. Hendriksen, M. Dijkstra, K. J. van der Velde,

J. Kuiper, H. Hillege, and M. Swertz. Biobankconnect: soft-

ware to rapidly connect data elements for pooled analysis across

biobanks using ontological and lexical indexing. Journal of the

American Medical Informatics Association, Oct 2014.

[256] Chao Pang, Annet Sollie, Anna Sijtsma, Dennis Hendriksen, Bart

Charbon, Mark de Haan, Tommy de Boer, Fleur Kelpin, Jonathan

Jetten, Joeri K. van der Velde, and et al. Sorta: a system for

ontology-based re-coding and technical annotation of biomedical

phenotype data. Database, 2015:bav089, 2015.

[257] Brent S. Pedersen, Ryan M. Layer, and Aaron R. Quinlan. Vc-

fanno: fast, flexible annotation of genetic variants. Genome Bi-

ology, 17(1), Jun 2016.

[258] Jaume Pellicer, Michael F. Fay, and Ilia J. Leitch. The largest

eukaryotic genome of them all? Botanical Journal of the Linnean

Society, 164(1):10–15, Sep 2010.

[259] K. Peng, W. Xu, J. Zheng, K. Huang, H. Wang, J. Tong, Z. Lin,

J. Liu, W. Cheng, D. Fu, and et al. The disease and gene anno-

tations (dga): an annotation resource for human disease. Nucleic

Acids Research, 41(D1):D553–D560, Nov 2012.

[260] Bjoern Peters, John Sidney, Phil Bourne, Huynh-Hoa Bui, Soeren

Buus, Grace Doh, Ward Fleri, Mitch Kronenberg, Ralph Kubo,

Ole Lund, and et al. The immune epitope database and analysis

resource: From vision to blueprint. PLoS Biology, 3(3):e91, Mar

2005.

275



BIBLIOGRAPHY

[261] Lauren A Peters, Jacqueline Perrigoue, Arthur Mortha, Alina

Iuga, Won-min Song, Eric M Neiman, Sean R Llewellyn, Antonio

Di Narzo, Brian A Kidd, Shannon E Telesco, and et al. A func-

tional genomics predictive network model identifies regulators of

inflammatory bowel disease. Nature Genetics, 49(10):1437–1449,

Sep 2017.

[262] Phillip H. Pham, William J. Shipman, Galina A. Erikson,

Nicholas J. Schork, and Ali Torkamani. Scripps genome adviser:

Annotation and distributed variant interpretation server. PLOS

ONE, 10(2):e0116815, Feb 2015.

[263] PAGE-OM The Phenotype and Genotype Object Model. Avail-

able: http://www.pageom.org/. URL, 2010.

[264] Megan Phifer-Rixey and Michael W Nachman. Insights into mam-

malian biology from the wild house mouse mus musculus. eLife,

4, Apr 2015.

[265] E M Phizicky and S Fields. Protein-protein interactions: methods

for detection and analysis. Microbiol Rev., 59:94–123, Mar 1995.
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Yaghootkar, Claudia Schurmann, Johannes Kettunen, Mark W

Christiansen, Benjamin P Fairfax, Katharina Schramm, Joseph E

Powell, and et al. Systematic identification of trans eqtls as pu-

tative drivers of known disease associations. Nature Genetics,

45(10):1238–1243, Sep 2013.

[365] Amy B Wilfert, Katherine R Chao, Madhurima Kaushal, Sanjay
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Appendix A

Summary

All organisms have a genome made of DNA (deoxyribonucleic acid).

The genome can be found in nearly every cell and is the blueprint for the

growth, development, maintenance and repair of the body. It performs

these functions by transcribing small pieces of DNA, the genes, from

the genome and translating them to proteins. These proteins are the

tiny workhorses of the body that break down food, give bones their

strength, make muscles move, let brains think, and so on. There are

many thousands of different genes and proteins with each their own

task.

The genome is copied from cell to cell, and is inherited from gen-

eration to generation. The copying process is incredibly precise, but

always makes a few little mistakes. These so-called mutations cause

small differences between individuals, so that natural selection and thus

evolution can take place. Unfortunately, mutations can also cause detri-

mental effects, such as genetic disorders. When the function of a gene
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is disrupted by a mutation, a specific disorder can arise. For a lot of

genes it is known which disorder they can cause, but for most genes we

do not know what happens when they are disrupted.

In this thesis we research and develop various bioinformatics models,

methods en systems to elucidate which genes and DNA differences can

make people ill. To support the research into genes, we develop a

database in chapter 2. This database is useful for collecting all kinds of

biological data. Chapter 3 presents software to analyze these data as an

extension to this database. This software can determine which region

of the genome is responsible for diseases and other physical traits.

Organisms such as rat, worm or zebrafish allow us to perform re-

search that would be impractical or unethical on humans. These studies

deliver valuable biological insights, but it is often remains unclear how

those insights can help us to understand human disorders. In Chapter

4 we report the development of an interactive database that connects

research into worms to the genetics of human disease. Despite the

fact that worms do not look much like humans, they have thousands

of genes that work exactly the same way as in humans. By looking at

disorders, physical traits and genes in both organisms we discover new

ways to use worms for research into human diseases.

Next to understanding the genes lies the challenge to determine the

harmfulness (pathogenicity) of new mutations. Each individual carries

many unique mutations no one else has. This makes it challenging

to find the causal mutation for a patient with a genetic disorder. We

can use our knowledge of the genome and evolution to predict how

pathogenic new mutations are. In chapter 5 we report a smart new

method which predict which mutations are harmless and which cause

hereditary colon cancer. This works rather well and we make recom-

mendations for the guideline that establishes diagnoses.

Encouraged by these results we expanded our scope from just a few

to thousands of disease genes in chapter 6. For this, we use DNA from

individuals that have no connection to severe disorders. We compared

that to disease causing mutations that were found in patients. By
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crunching the numbers for every gene, it is determined when a mutation

is probably disease causing. The final result is a public website where

the DNA of patients can be scanned quickly and accurately for probable

pathogenic mutations.

Finally, chapter 7 describes how we developed a system for auto-

mated DNA analysis, including a protocol specific for genome diagnos-

tics. This protocol uses our new method but also the latest knowledge

on mutations and genes. Pathogenic mutations are not always responsi-

ble for the disease of a patient. That is why the DNA of family members

is used to determine if the genetic pieces of the patient truly fit. The

output is a new file format in which medically relevant information is

formally expressed. This file can be converted to a clear report in which

the most important information is found at the top.

One of the advantages is that we can apply this analysis without

manual work to the genomes of thousands of healthy people. The

results act as a control that tells us how often the software returns an

accidental hit in each gene. By stating this information in the final

report, medical experts can focus their attention on genes with the

fewest accidental hits. This increases the speed and confidence at which

a genetic diagnosis is established for the patient.
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Samenvatting

Alle organismen hebben een genoom dat is opgebouwd uit DNA (des-

oxyribonuclëınezuur). Het genoom zit in bijna elke cel en is de blauw-

druk voor de groei, ontwikkeling, onderhoud en herstel van het lichaam.

Het vervult deze functies door kleine stukjes DNA, de genen, van het

genoom af te schrijven en deze te vertalen naar eiwitten. Deze eiwitten

zijn de werkpaardjes van het lichaam die voedsel afbreken, botten hun

sterkte geven, spieren laten bewegen, hersenen laten denken, enzovoort.

Er zijn vele duizenden verschillende genen en eiwitten met allemaal hun

eigen taak.

Het genoom wordt gekopieerd van cel naar cel, en wordt overgeërfd

van generatie op generatie. Het kopieerproces is ongelofelijk precies,

maar maakt altijd wel een paar foutjes. Deze zogeheten mutaties zor-

gen voor kleine verschillen tussen individuen, waardoor natuurlijke se-

lectie en dus evolutie kan plaatsvinden. Helaas kunnen mutaties ook

nadelige effecten veroorzaken, zoals erfelijke ziektes. Wanneer de werk-
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ing van een gen verstoord wordt door een mutatie kan een bepaalde

ziekte optreden. Van een hoop genen is bekend welke ziekte ze kunnen

veroorzaken, maar van de meeste genen weten we niet wat er gebeurt

wanneer ze verstoord worden.

In dit proefschrift onderzoeken en ontwikkelen we verscheidene bioin-

formatica modellen, methoden en systemen om op te helderen welke

genen en DNA verschillen mensen ziek kunnen maken. Om het on-

derzoek naar genen te ondersteunen, ontwikkelen we een database in

hoofdstuk 2. Deze database is handig voor het verzamelen van aller-

lei biologische gegevens. Als uitbreiding op deze database presenteert

hoofdstuk 3 software voor de analyse van deze gegevens. Deze soft-

ware kan bepalen welk gebied van het genoom verantwoordelijk is voor

ziektes en andere uiterlijke kenmerken.

Dieren zoals rat, worm en zebravis stellen ons in staat om onder-

zoek te doen die onpraktisch of onethisch zou zijn op mensen. Deze

onderzoeken leveren waardevolle biologische inzichten op, maar het bli-

jft vaak onduidelijk hoe die inzichten ons kunnen helpen om ziektes in de

mens te begrijpen. In hoofdstuk 4 rapporteren we de ontwikkeling van

een interactieve database die het onderzoek naar wormen verbindt aan

de genetica van menselijke ziektes. Ondanks het feit dat wormen niet

echt op mensen lijken, hebben zij duizenden genen die precies hetzelfde

werken als bij mensen. Door te kijken naar ziektes, uiterlijke kenmerken

en genen in beide organismen ontdekken we nieuwe manieren om wor-

men te gebruiken voor onderzoek naar menselijke ziektes.

Naast het begrijpen van de genen ligt de uitdaging om de schadeli-

jkheid (pathogeniciteit) van nieuwe mutaties te bepalen. Ieder individu

draagt vele unieke mutaties die niemand anders heeft. Dit maakt het

een uitdaging om de schuldige mutatie te vinden bij een patient met

een genetische ziekte. We kunnen onze kennis van het genoom en de

evolutie inzetten om te voorspellen hoe pathogeen nieuwe mutaties zijn.

In hoofdstuk 5 rapporteren we een slimme nieuwe methode die voorspelt

welke mutaties ongevaarlijk zijn en welke erfelijke darmkanker veroorza-

ken. Dit blijkt vrij goed te kunnen en we doen aanbevelingen voor de
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richtlijn die diagnoses stelt.

Aangemoedigd door deze resultaten zijn we onze speelruimte gaan

uitbreiden van slechts een paar tot wel duizenden ziektegenen in hoofd-

stuk 6. Hiervoor gebruiken we DNA van mensen die geen verband

hebben met ernstige ziektes. Dat vergelijken we met ziekteverwekkende

mutaties die bij patienten gevonden zijn. Met het nodige rekenwerk voor

ieder gen wordt bepaald wanneer een mutatie waarschijnlijk ziektever-

wekkend is. Het resultaat is een openbare website waar het DNA van

patienten snel en accuraat gescand kan worden op mogelijk pathogene

mutaties.

Tenslotte beschrijft hoofdstuk 7 hoe we een systeem voor geautoma-

tiseerde DNA analyse ontwikkeld hebben, inclusief een protocol specifiek

voor genoom diagnostiek. Dit protocol gebruikt onze nieuwe methode

maar ook de laatste kennis over mutaties en genen. Pathogene mutaties

zijn niet altijd verantwoordelijk voor de ziekte van een patient. Daarom

wordt het DNA van familieleden gebruikt om te bepalen of het genetis-

che plaatje bij de patient ook echt klopt. De uitvoer is een nieuw be-

standsformaat waarin medisch relevante informatie formeel wordt uitge-

drukt. Dit bestand kan worden omgezet naar een overzichtelijk rapport

waarin de meest belangrijke informatie bovenaan staat.

Eén van de voordelen is dat we deze analyse zonder handwerk kun-

nen toepassen op de genomen van duizenden gezonde mensen. De

uitkomst hiervan dient als controle die ons verteld hoe vaak de soft-

ware een toevalstreffer heeft in elk gen. Door deze informatie in het

uiteindelijke rapport te vermelden kunnen medisch experts hun aan-

dacht richten op genen met de minste toevalstreffers. Hiermee wordt

de snelheid en zekerheid waarmee een genetische diagnose bij de patient

wordt vastgesteld, verhoogd.
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APPENDIX C. ACKNOWLEDGEMENTS

LOCUS ACKNWLDGMNTS 1380 bp DNA linear KJV 15-NOV-2017

DEFINITION Dear friends: living beings are the result of a complex network of

thousands of interacting genes. Likewise, a PhD thesis is the

result of the support and collaboration of many interacting

individuals - you! Truly, you may consider yourself the DNA of this

thesis. I would like to sincerely thank each and every one of you

for your kindness, brilliance and great times that allowed me to

complete this book. Dank jullie wel!

ACCESSION DNKWRD2017

VERSION DNKWRD2017.1

KEYWORDS Thanks; bedankt; gracias; merci; danke.

SOURCE Homo sapiens (human)

ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;

Catarrhini; Hominidae; Homo.

REFERENCE 1 (bases 1 to 1380)

AUTHORS Van der Velde,K.J.

TITLE Acknowledgements

JOURNAL Translational software infrastructure for medical genetics

COMMENT Special thanks goes out to my promotor Prof. Morris Swertz, for

providing me with many interesting projects, fruitful

collaborations, and opportunities to try out all kinds of ideas.

Dear Morris, your energy, ambition and always positive "can do"

attitude has been a real driver and great inspiration. Cheers!

I would also like to express my gratitude to my other promotores,

Prof. Richard Sinke and Assistant Prof. Yang Li, as well as Prof.

Cisca Wijmenga and Prof. Ritsert Jansen. Your clever insights,

constructive feedback and incredible commitment has taken my work

to the next level. Furthermore, Prof. Rolf Sijmons and Prof. Lude

Franke have been important sources of inspiration and wild ideas

for which I owe them my thanks. I am also grateful for the help

from our editors Kate and Jackie. You turn what looks like English,

into English. Last but not least, I want to thank my paranymphs

Freerk and Bart, and everyone who contributed in their own way

including friends, past and present colleagues, students and

family. I hope I managed to include all your names in the ’DNA

code’ below. Lieve papa, mama, Lianne en Misha, dank voor jullie

steun en interesse in mijn werk. Lieve Annelies, dank voor je

verhelderende blik, creativiteit en het aanhoren van oefenpraatjes.

FEATURES Location/Qualifiers

source 1..1380

/organism="Homo sapiens"

/mol_type="acknowledgemental DNA"

/db_xref="taxon:9606"
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mRNA join(1..1380)

/gene="YOU"

/product="THESIS"

ORIGIN

1 grichardat ccmieketcc atpaulatac ahermanacg glioneltat ctateccacc

61 rosalietca ggtaarnett agajapketc terwincaac aacgdouweg aacgertjan

121 catkatetgc johncgacat gaghelenea caggerbent tagjonnegt atcmartijn

181 luukgtcgag agttacjana agctbirgit aaaseboacg agrenecagt ahenriette

241 gtcagjuhac tctgclinni machielatc tlennartga agccsander gctgludeaa

301 gtrijniett ctacellent aagggtjosg gataatessa catsusanne jannekecat

361 cmennocgtg chenkaagac caagconnor aaccfloris ganniquecc aatasalome

421 gacchaoaac atcarinatg tedgaraaca tattpeerta gpatrickga taannelies

481 tanicolien cctcgcleoa xanderaaat aatroanaaa ccmentjegc copaenomaa

541 jacquescac tjonathang laurenttca ttaharment tataatgerc agrobinaaa

601 arjencagaa cgmichielc aniekaaaat tbastenatc cciscaacta tpieterata

661 attcgeorge amartenaag klazienacg cruggeroga acharlieaa amariellea

721 jingyuanaa adavidgaac arobertacg cgtmariska catsophiea gaacttleon

781 tsipkotggc aadespoina tmariotcgc gtommytcac marcjanaaa taaattdaan

841 jokettggca acttafleur ttomgtttcc tcttcjoris matthieuga gceddyagta

901 ctcpjotrga jackiegccc alaintgtct caandrewag apeteratgt asvenataat

961 amienteccc mariekeatc gtsidoaggt atggwesley ttaaayangg kristinata

1021 gcwimatctc cingridaca acctcabart adannyagct johannekec cttgmorris

1081 ccgmartina gagtcgbote jipccctcct ttgtcthomg afreerkgta marloesatt

1141 ttcactkimt tdennistca marktatgag aactrobtat tadriaantt cttaeditht

1201 tritsertct talextactc tcacerikat crolfctgta gtfrankgat tgacachans

1261 tgcaaedwin cagccmisha awietzecca tliannecac ruditagaag konradaaca

1321 gaacajoela tmartineta ctjakobtaa tagaaelisa aaatkoenta jelkotatct

//

313



APPENDIX C. ACKNOWLEDGEMENTS

314



Appendix D

About the author

Kasper Joeri van der Velde was born on

May 24th 1986 in Drachten (municipality of

Smallingerland), The Netherlands. He com-

pleted his bachelors Bioinformatics in 2008,

graduating on pathway visualizations of ki-

nase activity at the Groningen Bioinformatics

Centre in collaboration with the UMC Gronin-

gen dept. of Cell Biology. He continued to

work on MOLGENIS software infrastructure

for multi-omics research in Arabidopsis, mice

and C. elegans at the Groningen Bioinformat-

ics Centre. In 2012 he started as a PhD stu-

dent at the UMC Groningen dept. of Genet-

ics, working on new methods for downstream

clinical analysis of next-generation sequenc-

315



APPENDIX D. ABOUT THE AUTHOR

ing data in the group of Morris Swertz. Amongst a unique crowd of

clinicians, software developers, geneticists, parallel computing experts,

wet-lab technicians and statisticians, he aims to discover new ways to

revolutionarize the speed, yield and applications of genome interpreta-

tion for medical genetics, powered by a wealth of untapped resources

available in the public domain.

316



Appendix E

List of publications

1. Global genetic robustness of the alternative splicing machinery

in Caenorhabditis elegans. Li Y, Breitling R, Snoek LB, van

der Velde KJ, Swertz MA, Riksen J, Jansen RC, Kammenga

JE. Genetics. 2010 Sep;186(1):405-10. doi: 10.1534/genet-

ics.110.119677. Epub 2010 Jul 6.

2. OntoCAT – a simpler way to access ontology resources. Adamu-

siak T, Burdett T, van der Velde KJ, Abeygunawardena N,

Antonakaki D, Parkinson H, and Swertz M. OntoCAT – a simpler

way to access ontology resources. Nature Precedings. 2010. doi:

10.1038/npre.2010.4666.1

3. The MOLGENIS toolkit: rapid prototyping of biosoftware at the

push of a button. Swertz MA, Dijkstra M, Adamusiak T, van

der Velde JK, Kanterakis A, Roos ET, Lops J, Thorisson GA,

Arends D, Byelas G, Muilu J, Brookes AJ, de Brock EO, Jansen

317



APPENDIX E. LIST OF PUBLICATIONS

RC, Parkinson H. BMC Bioinformatics. 2010 Dec 21;11 Suppl

12:S12. doi: 10.1186/1471-2105-11-S12-S12.

4. XGAP: a uniform and extensible data model and software platform

for genotype and phenotype experiments. Swertz MA, Velde

KJ, Tesson BM, Scheltema RA, Arends D, Vera G, Alberts R,

Dijkstra M, Schofield P, Schughart K, Hancock JM, Smedley D,

Wolstencroft K, Goble C, de Brock EO, Jones AR, Parkinson

HE; Coordination of Mouse Informatics Resources (CASIMIR);

Genotype-To-Phenotype (GEN2PHEN) Consortiums, Jansen RC.

Genome Biol. 2010;11(3):R27. doi: 10.1186/gb-2010-11-3-r27.

Epub 2010 Mar 9.

5. OntoCAT–simple ontology search and integration in Java, R and

REST/JavaScript. Adamusiak T, Burdett T, Kurbatova N, Joeri

van der Velde K, Abeygunawardena N, Antonakaki D, Kapush-

esky M, Parkinson H, Swertz MA. BMC Bioinformatics. 2011

May 29;12:218. doi: 10.1186/1471-2105-12-218.

6. Bioinformatics tools and database resources for systems genetics

analysis in mice – a short review and an evaluation of future needs.

Durrant C, Swertz MA, Alberts R, Arends D, Möller S, Mott
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Date Activity

01-09-2012 Participated in the GSMS Project Management course

06-09-2012 Attended the 20th Annual GBB Symposium

12-09-2012 Attended the BioSHaRE Annual Meeting, Paris

27-09-2012 Gave an oral presentation at the LFN Symposium, Wageningen

08-11-2012 Participated in the PhD Introduction Event, Ezinge

19-11-2012 Attended the Connecting Biobanks Meeting, Utrecht

28-11-2012 Participated in the course ’Introduction to HL7/DCM’

03-12-2012 Participated in the Nordic BBMRI Meeting, Tartu

07-01-2013 Talked at the ENCODE Journal Club about machine learning

13-03-2013 Visited dermatology clinic at Instytut Matki i Dziecka, Warsaw

19-03-2013 Attended the CTMM TraIT Symposium, Utrecht

03-04-2013 Gave an oral presentation at the TarGet Conference

16-04-2013 Presented a poster at the NBIC Conference, Lunteren

16-04-2013 Reviewed a paper for J. of the Am. Medical Informatics Assoc.

14-05-2013 Received the BOSC 2013 Student Travel Award

17-06-2013 Participated in the SYSGENET MC Meeting, Prague

18-06-2013 Gave an oral presentation at the BOSC Conference, Berlin

25-06-2013 Visited the dept. of Genetics at the University of Leicester

01-07-2013 Supervised internship student Mark de Haan

11-07-2013 Reviewed a paper for Journal of Web Semantics

26-08-2013 Participated in the GOPHER/RUG PhD Day

11-09-2013 Gave an oral presentation at the BMB Meeting, Dusseldorf

12-09-2013 Presented a poster at the CTMM Annual Meeting, Utrecht

04-11-2013 Gave an oral presentation at the BioShare AM, Barcelona

21-11-2013 Attended the HandsOn Biobanks Conference, The Hague

12-12-2013 Visited several research groups at the EBI, Hinxton

01-01-2014 Supervised graduation student Pieter Dopheide

01-01-2014 Supervised graduation student Mark de Haan

28-01-2014 Talked at ADCB Journal Club about Deng et al. (Science)

23-02-2014 Attended the Joint RD-Connect Meeting, Heidelberg

20-05-2014 Gave an oral presentation at the HVP5 Conference, Paris

31-05-2014 Presented a poster and satellite talk at ESHG Conference, Milan

01-07-2014 Supervised graduation student Tommy de Boer

20-08-2014 Taught a course segment at UMCG Biobanking Summer School

Table F.1: Other academic activities, pt. 1/2.
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12-09-2014 Written a Jan Kornelis de Cock grant proposal

20-09-2014 Participated in the GOPHER/RUG PhD Day

28-10-2014 Taught course segment at VKGL/VKGN NGS diagn., Rotterdam

28-11-2014 Presented a poster at Connecting Biobanks Conference, Leiden

01-01-2015 Supervised internship student Marieke Bijlsma

19-01-2015 Talked at ADCB Journal Club about Leiserson et al. (Nat. Gen.)

02-02-2015 Reviewed a paper submission for ISMB/ECCB

31-03-2015 Participated in the course ’Introd. to Genetic Epidem. Research’

06-06-2015 Presented a poster at the ESHG Conference, Glasgow

11-06-2015 Attended the GSMS PhD Development Conference

25-06-2015 Talked at the Epigenome Journal Club about DIY analysis in R

01-07-2015 Supervised graduation student Marieke Bijlsma

10-07-2015 Presented a poster at the BOSC Conference, Dublin

22-09-2015 Taught course segment at VKGL/VKGN NGS diagn., Rotterdam

05-11-2015 Talked at ADCB Journal Club about Itan et al. (PNAS)

01-01-2016 Supervised graduation student Mariska Slofstra

01-01-2016 Supervised graduation student Thom Steenhuis

18-02-2016 Participated in the ProjectFactory course by TOC consultants

04-03-2016 Written a BBMRI voucher on variant data sharing

21-03-2016 Participated in the course ’Publishing in English gr.c’

14-04-2016 Talked at ADCB Journal Club about Zhu et al. (Nat. Gen.)

21-05-2016 Presented a poster and a satellite talk at ESHG, Barcelona

01-06-2016 Reviewed a paper for The American Journal of Human Genetics

03-09-2016 Gave an oral presentation at the ECCB Conference, The Hague

20-09-2016 Taught course segment at VKGL/VKGN NGS diagn., Rotterdam

11-10-2016 Taught a course segment at MPDI TopMaster course I

03-11-2016 Talked at ADCB Journal Club about Turpin et al. (Nat. Gen.)

19-12-2016 Reviewed a paper for Genome Biology

03-07-2017 Visited the SciLifeLab Clinical Genomics facility, Stockholm

07-09-2017 Started to supervise graduation student Sander van den Hoek

11-09-2017 Taught course segment at VKGL/VKGN NGS diagn., Rotterdam

02-10-2017 Participated in Bioschemas Adoption Meeting at EBI, Hinxton

09-10-2017 Started to supervise internship student Peer Ketelaars

16-11-2017 Gave an oral presentation at the NASPM Conference, Høvik

Table F.2: Other academic activities, pt. 2/2.
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Back cover image explained

The back cover shows an altered version of the Arecibo message, send

out on 16 November 1974 from the Arecibo Observatory in Puerto Rico.

Key numbers were updated, the antenna dish graphic left out, and it

was extended for medical genetics / bioinformatics. The original trans-

mission was broadcasted with a power of 1,000 kW towards globular

star cluster M13, which it will reach in roughly 25,000 years.
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The numbers 1-10 in binary notation, note that the ‘8’ is offset to

the right relative to the start-of-number indicator

Atomic numbers (i.e. proton number) of the elements H (1), C (6),

N (7), O (8) and P (15), used in the DNA molecular diagram below
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Deep inside the core of our cells re-
sides the deoxyribonucleic acid (DNA)
molecule known as the genome. DNA
encodes the information that allows
life to grow, survive, diversify and
evolve. Unfortunately, the same mech-
anisms that let us adapt to a chang-
ing environment can also cause genetic
disorders. While we are able to diag-
nose a number of these disorders using
modern technological advancements,
much remains to be discovered and un-
derstood. This thesis presents soft-
ware infrastructure for investigating
the molecular etiology of genetic dis-
ease using data from model organisms,
demonstrates how to translate findings
from fundamental research into new
software tools for genome diagnostics,
and introduces a downstream genome
analysis framework that assists the au-
tomation and validation of the latest
tools for applied patient care.
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