Contents

1	Supplementary material								
	1.1	Overview of explanations							
	1.2	VIC justifications for class 2 where 5 was predicted							
	1.3	CADD scaled-C scores vs. genomic coordinates							
	1.4	Primary SnpEff effect prediction vs. CADD scaled C-score							

1 Supplementary material

1.1 Overview of explanations

Gene	Variant	InSiGHT class	CADD- based class	Explanation
MLH1	c.394G>C	1	5	Attenuated protein function, but does not cause Lynch syndrome. Multifactorial like- lihood analysis posterior probability <0.001
MLH1	c.1852_1853delinsGC	1	5	Low risk, not associated with Lynch. Multi- factorial likelihood analysis posterior prob- ability <0.001
MLH1	c.803A>G	1	5	Multiple microsatellite stable tumours and does not segregate with disease. Multifacto- rial likelihood analysis posterior probability <0.001
MLH1	c.977T>C	1	5	Multiple microsatellite stable tumours and does not segregate with disease. Multifacto- rial likelihood analysis posterior probability <0.001
MLH1	c.1853A>C	1	5	Multiple microsatellite stable tumours and does not segregate with disease. Multifacto- rial likelihood analysis posterior probability <0.001
MLH1	c.2146G>A	1	5	Multiple microsatellite stable tumours and does not segregate with disease. Multifacto- rial likelihood analysis posterior probability <0.001
MLH1	c.1151T>A	1	5	Population minor allele frequency >1%
MLH1	c.2152C>T	1	5	Population minor allele frequency >1%
MSH2	c.1077-10T>C	1	5	Population minor allele frequency >1%
MLH1	c.1799A>G	1	5	Does not segregate with disease. Multifac- torial likelihood analysis posterior probabil- ity <0.001

MLH1	c.790+10A>G	1	5	Does not cause splicing aberration and does not segregate with disease. Multifacto- rial likelihood analysis posterior probability <0.001
MSH2	c.593A>G	1	5	May be low-moderate risk, but certainly not high-risk associated with Lynch
MSH6	c.642C>A	5	1	Stop-gain variant causing protein truncation
MSH6	c.642C>G	5	1	Stop-gain variant causing protein truncation
MSH2	c.212-478T>G	5	1	Splicing aberration introduces premature termination codon (<i>also missed by SnpEff</i>)
MSH2	c.646-3T>G	5	1	Splicing aberration introduces premature termination codon
MSH2	c.367-480_645+644del	5	1	Deletion of Exon 3
MLH1	c.307-1420_380+624del	5	1	Deletion of Exon 4
MLH1	c.307-820_380+896del	5	1	Deletion of Exon 4
MLH1	c.381-415_453+733del	5	1	Deletion of Exon 5
MLH1	c.454-665_545+49del	5	1	Deletion of Exon 6 (raw score of 527)
MLH1	c.1039-675_1409+26del	5	1	Deletion of Exon 12 (raw score of 361)
MLH1	c.1039-2329_1409+827del	5	1	Deletion of Exon 12 (raw score of 353)
MLH1	c.1732-2243_1896+404del	5	1	Deletion of Exon 16
MSH2	c.1077-135_1276+119dup	5	1	Duplication of Exon 7 (also missed by SnpEff)
MSH2	c.1077-220_1276+6245del	5	1	Deletion of Exon 7
MSH2	c.1277-572_1386+2326del	5	1	Deletion of Exon 8 (raw score of 464)
PMS2	c.804-?_903+?del	5	1	Deletion of Exon 8
PMS2	c.804-?_2006+?del	5	1	Deletion of Exons 8-11
PMS2	c.989-296_1144+706del	5	1	Deletion of Exon 10 (raw score of 527)
PMS2	c.2276-113_2445+1596del	5	1	Deletion of Exon 14

Table 1: Overview of explanations according to InSiGHT why the cumulative link model based on CADD scores encountered certain false positives and false negatives.

Gene	Variant	AA change	Probability	VIC justification
MLH1	c.117-43_117-39del	intronic	0.99	Intronic substitution with no associated splicing aberration, tested with NMD in- hibitors
MLH1	c.845C>G	A282G	0.92	Posterior probability 0.001-0.049
MLH1	c.885-24T>A	intronic	0.81	Intronic substitution with no effect on splic- ing and MAF 0.01-1%
MLH1	c.974G>A	R325Q	0.99	Posterior probability 0.001-0.049
MLH1	c.1742C>T	P581L	0.55	Posterior probability 0.001-0.049. No CMMRD phenotype with co-occurrence and MAF 0.01-1%
MLH1	c.1808C>G	P603R	0.99	Posterior probability 0.001-0.049
MLH1	c.1820T>A	L607H	0.99	Posterior probability 0.001-0.049
MSH2	c.991A>G	N331D	0.69	Posterior probability 0.001-0.049
MSH2	c.1730T>C	I577T	0.86	Posterior probability 0.001-0.049
MSH2	c.2500G>A	A834T	0.99	Posterior probability 0.001-0.049
MSH6	c.3488A>T	E1163V	0.92	MAF >1% in specific population
MSH6	c.4068_4071dup	Lys1358Aspfs*2	0.99	MAF >1% in specific ethnic group

1.2 VIC justifications for class 2 where 5 was predicted

Table 2: Variants of class 2 (likely benign) for which class 5 (pathogenic) is the predicted class according to the CADD-based model. Posterior probabilities are derived from a multifactorial likelyhood analysis.

1.3 CADD scaled-C scores vs. genomic coordinates

CADD scaled-C scores vs. genomic coordinates for MMR gene variants: *MLH1*, *MSH2*, *MSH6*, and *PMS2*. The green bands are the exons. Red are InSiGHT variants, where triangles represent class 5, circles class 1, and plusses class 2-4. The black circles are variants seen in 1000 Genomes¹, blue circles are seen in the Genome of the Netherlands²³. The gray dots represent all potential SNVs.

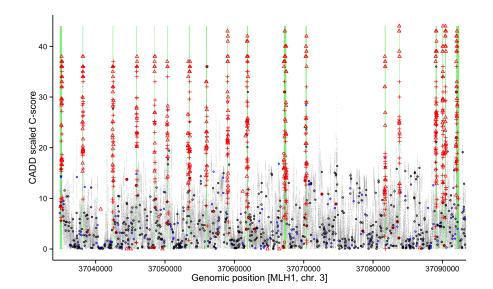


Figure 1: MLH1

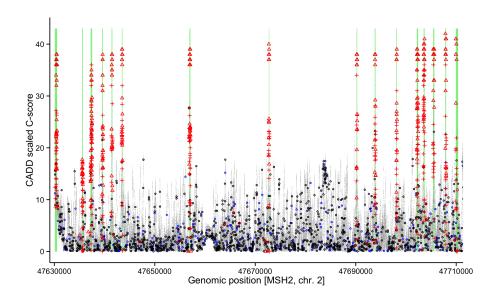


Figure 2: MSH2

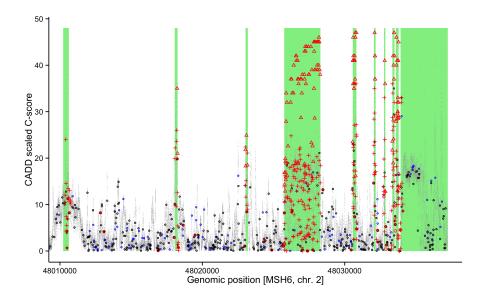


Figure 3: MSH6

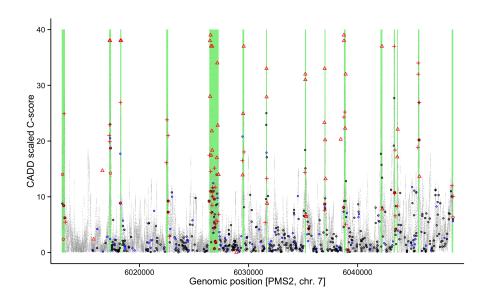


Figure 4: PMS2

1.4 Primary SnpEff effect prediction vs. CADD scaled C-score

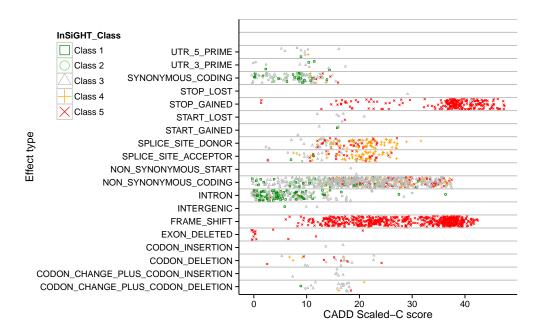


Figure 5: Primary SnpEff effect prediction vs. CADD scaled C-score, with InSiGHT classifications coloured.

References

- The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. *Nature*, 491(7422):56–65, Oct 2012. ISSN 1476-4687. doi: 10.1038/nature11632.
- [2] The Genome of the Netherlands Consortium. The genome of the netherlands: design, and project goals. *European Journal of Human Genetics*, 22(2):221–227, Feb 2014. ISSN 1476-5438. doi: 10.1038/ejhg.2013.118.
- [3] The Genome of the Netherlands Consortium. Whole-genome sequence variation, population structure and demographic history of the dutch population. *Nature Genetics*, Jun 2014. ISSN 1546-1718. doi: 10.1038/ng.3021.