
Genome Analysis Toolkit Coding Standards for Java

Genome Analysis Software Engineering

July 1, 2009

Contents

1 Overview 2
1.1 Credit . 2
1.2 Summary . 2
1.3 Cheat Sheet . 3

2 Naming 4
2.1 Package Naming . 4

2.1.1 Good practices . 4
2.2 Interface Naming . 5

2.2.1 Good practices . 5
2.3 Class Naming . 5

2.3.1 Good practices . 6
2.4 Field and Variable Naming . 6

2.4.1 Good practices . 6
2.5 Method Naming . 7

2.5.1 Good practices . 7

3 Layout 9
3.1 File Template . 9
3.2 Documentation . 9
3.3 Imports . 10
3.4 Order of Class Members . 10
3.5 Make em Pretty . 10

4 Design Considerations 11
4.1 Encapsulation . 11
4.2 Is-A versus Has-A . 11
4.3 Redundant data . 12
4.4 Exceptions . 12
4.5 Recovering External Resources . 12
4.6 Stateful Interfaces and Rules for Use . 12
4.7 Multithreading . 13
4.8 Canonical methods . 13
4.9 Performance . 13

1

Chapter 1

Overview

1.1 Credit

The majority of text in this document is verbatim from the production informatics coding standard document,
produced by Ted Sharpe and the production informatics team here at the Broad Institute. They deserve all
the credit for the insights in this document, and if you feel so inclined please share statements of gratitude
with them.

1.2 Summary

This document is an attempt to describe a brief and minimal set of standards for Java code for use by
production informatics projects at the Broad. The goal of the standards is to allow programmers to be
innovative and expressive, while allowing their peers a vague hope of maintaining and extending their output.
This document describes a set of arbitrary standards for naming and documentation based on industry-
standard practices, and a set of good practices guidelines intended to improve the maintainability, correctness,
and reusability of code. Good citizenship demands that you suggest improvements if you feel that the
document is not well crafted, rather than merely going your own way.

2

1.3 Cheat Sheet

Table 1.1: default

Type Style Example
Function names uppercase words, with the

first word lowercase
convertToParser

Package names lowercase, with specific func-
tional encapsulation for each
class

org.broadinstitute.sting.gatk

Variable names uppercase words, with the
first word lowercase

resetCounter

Class names uppercase words representing
a noun

TraversalEngine

Interface names the same as class names, no
’i’ before the name

GenomeEngine

Tab length 4 spaces

3

Chapter 2

Naming

Choosing names is among the more arduous tasks in programming. There is constant contention between
creativityfinding the mot justeand following fashion so as to more easily allow names to be guessed; and a tug
between being conciseif only to save typingand being verbose so as to provide greater explicitness. Expending
the time necessary to create a really good name conflicts with the programmers appropriate desire to get on
with the job and get something done. Unfortunately, naming has a great impact on the maintainability of
the code, and despite its being a somewhat fussy and fusty topic, a few guidelines are appropriate. If the
standards document is well crafted it will free the programmer from some of the arbitrary decision-making
that, when inconsistent, detracts from the intelligibility of the code, while allowing the programmer to focus
on the semantics of the name.

2.1 Package Naming

Package names should be all lower case, and should begin with:

org.broadinstitute.sting

To this add the product name (e.g., basecaller), and subdivide packages according to functionality be-
low that. Put all classes in a package (to allow for more easily understood dependency trees, and to allow
reuse via a CLASSPATH of reasonable length).

Listing 2.1: Good Package Names

package org . b r o ad i n s t i t u t e . s t i n g . b a s e c a l l l e r . ba s e ca l l e rEng ine ; // Good
package org . b r o ad i n s t i t u t e . s t i n g . b a s eCa l l i n gS tu f f ; // Bad
package myBaseCaller ; // Unacceptab le

2.1.1 Good practices

Try to organize packages so that the dependency tree isnt total spaghetti. Ideally, there should be a hierarchy
among the packages so that, for example, the web support classes are in one package, and dont know anything
about database access, and the database access classes are in another package, and dont know anything about
web support. Something that knows about both (a package that supports servlet development, for example)
should be in a separate package higher in the hierarchy. Think model-view-controller. Think Law of Demeter.

4

2.2 Interface Naming

Interfaces require no special naming convention to distinguish them from classes. (See the Class naming
conventions below.) The presumption is that most of the types that you are passing around are, in fact,
abstract types that dont lock you into a particular implementation: elaborate decoration of interface names
is therefore unnecessary and undesirable. Distinguish the implementation class names instead (since they
should be repeated far less often throughout the code than the names of the interfaces)

Listing 2.2: Good Interface Names

interface DatabaseBinder // OK
interface ITagFactory // not as good

Some people like to reserve able or ible names for interfaces (e.g., Cloneable, Comparable, or Runnable).
This is especially useful for mix-in interfaces, where the interface describes a capability that can be shared
among otherwise disparate types of objects. Not all interfaces fall into this pattern, however, and you neednt
be concerned if your interface seems to want to have a noun as its name, rather than forcing it into the
verb-able mold.

2.2.1 Good practices

Expending the time necessary to abstract common behavior from a set of related classes is probably the single
most important thing you can do to improve the extensibility and adaptability of your code. Use interfaces
to describe the common behavior so that you dont force your clients to use particular implementations.
In all cases, the methods of the interface describe the complete repertoire of behaviors necessary to be an
object of the type named by the interface. So check your name to see if it describes something possessing
the interfaces set of behaviors, and check your methods to see if thats what something by that name should
be able to do. Ruthlessly eliminate any inconsistencies.

2.3 Class Naming

Naming: Use mixed-case names, capitalizing the first character of each word. Avoid overly short, and overly
common names, and overly long, verbose names. If there is doubt about whether the components of a name
are separate words, use less capitalization rather than more. (E.g, Timezone, not TimeZone. Barcode, not
BarCode.) You are aiming to capitalize each concept, not each morpheme. A primary interface name is
a good prefix for a class name. A package name is not a good prefix. (For one thing, its redundant, and
for another, it inhibits easy refactoring of packages that have come to have tangled dependencies.) Should
you need to distinguish a common, or base-level implementation from its primary interface, you may add
a suffix of your choosing. A suffix that describes the implementation in some way is preferable to -Impl or
-Base or some generic suffix. (Note that the JDK classes dont respect this, or any other, consistent naming
scheme. So it goes. Youll have to find another source of inspiration.) Dont abbreviate any of the words in
a class name. Its just too hard to remember, and too likely to introduce inconsistency. You may, however,
use very common acronyms as if they were a word. For example, StructuredQueryLanguageHelper would
be quite ridiculousSQL is a common acronym, and the class should be called SqlHelper (note the lower case
ql). Class names must be nouns.

Listing 2.3: Good Class Names

class FormModule // OK
class SOExecutor // not very good obscure a b b r e v i a t i o n s
class State // not good too vague , ambiguous , and common

5

2.3.1 Good practices

A class should model a clear concept. If you cant explain the concept behind a class in a sentence or two,
there is probably something wrong. (And if your sentence or two seems to require extensive use of the word
or you can be certain that you have a problem.)

2.4 Field and Variable Naming

Use mixed case names, capitalizing the first character of each word except the first. Constants may be all
upper case, using underscores to separate words. Idiosyncratic abbreviations are acceptable for variable and
field names, because their scope is very limited. (This is because you wont be using any public fields: see
below.) Public constants should follow the semantic rules already specified for classes: not too short, not
too long, no cryptic abbreviations. Remember that your clients will qualify the name of the constant with
the class name, so overly common words are not so much of a problem as for class names.

2.4.1 Good practices

No non-final public fields. Ever. Period. You know why. (But just to be tediously explicit, well go on a bit
about it.) Just when you think youve got a totally passive data-bearing object that might just as well be a
C-language struct as a Java class, and you reckon youll just make its fields public, youll figure out that it
needs behavior. It needs to be persistent, and has to keep track of whether its been dirtied or not. Or it needs
a new field that is dependent in some way on the other fields. Something will inevitably crop up that will be
completely impossible to implement if anyone from anywhere can modify the properties at any time. Writing
accessors for the properties of passive objects is enormously time-consuming. But trying to track down all
clients usage of the public fields of an object you need to modify is also enormously time-consuming (and
terrifying). Maybe you could write a macro to save some of the typing. Sacks of data are so boringobjects
long to have behavior. Note that public members of private, nested classes arent really public at all, and so
theyre perfectly fine. (This allows you to create struct-like objects for internal use within a class.) Be careful
about static objects (whether public or private, final or not): they get created when the class is loaded
and there is no easy way to handle complex dependencies among them that might require some particular
loading order. Its best to keep them very simplefor example, creating tiny immutable static objects to
simulate C++-style enumerations is completely appropriate. Experience has shown that distinguishing the
names of instance fields, class (i.e., static) fields, and constants from each other and from temporaries (i.e.,
stack frame variables, whether declared in a local block or passed as arguments) is enormously helpful in
quickly comprehending a method: Its good to know at a glance how the code is affecting the state of the
object (instance fields) or of all the objects in the class (class fields) without having to study the entire class
to learn the names of its member fields. The easiest way to do this is to use a single letter prefix to designate
the scope of the field. You may choose any consistent scheme. One common standard is to use the prefix g
for static members, m for instance members, all capital letters for constants, and nothing for temporaries.
If this has too much of a Microsoft taint for your taste, you could use g for static members, f for instance
members, k for constants, and nothing for temporaries. This comes from the folks at Netscape. (Therefore,
one or the other must be politically acceptable.) If you use such a scope prefix, this counts as the first,
lower-case word. Note also that the use of such a prefix for members pretties-up initialization: youll never
be forced to use this in your constructor to disambiguate an argument from a member, since arguments and
members cannot have the same name. Overly short variable names, especially one-character names, and
names that are common words, or parts of common words, are a problem for programmers who use editors
with a limited understanding of Javas syntax. Using iii as a for-loop index instead of i doesnt really take
much extra time, and it makes it a great deal easier to find all the places where the variable is used.

Listing 2.4: Good Variable Names

private stat ic Sec t i on gHeader ; // c l a s s member

6

private URL mMyURL; // ins tance member
St r ing wfQName ; // l o c a l ug ly , but who cares ?
for (int i = 0 ; i < k ; ++i) // Please , d o n t .
int i i i ; // Thank you .

2.5 Method Naming

Use mixed case names, capitalizing the first character of each word except for the first. The first, uncapitalized
word should be a verb. Uncomplicated, local fetchers and modifiers of independent state ought to use get
and set as their first word. Getters for boolean values can use is, has, or can instead of get. (Conversely, a
method that causes the lights to dim over a several square block area should not be called getFoo. Merely
to name it fetchFoo instead appropriately hints that something more complicated might be going on. And,
of course, the methods documentation will make all this explicit!) Its especially important that you dont
use obscure abbreviations or leave the vowels out of words in method names: theyre too hard to remember.
Common acronyms, treated as if they were words, are fine. Its quite helpful if the name of the method is
pronounceable, and spelled as its pronounced.

2.5.1 Good practices

Methods that have more lines than can fit on the screen all at once are much harder to understand than
those that dont. Ditto for methods that have numerous lines that must be wrapped due to their length.
Some suggest that each method can have at most one looping control structure. That doesnt always work in
practice, but you get the gist. Following strict structured programming rules is usually an aid to comprehen-
sion. (This might not be true if doing so requires you to use a complicated set of flags to control the flow.)
If you feel that a continue, labelled break, or early return is less confusing than the structured alternatives,
provide a comment to call attention to the easily overlooked, one- or two-token statement that breaks the
rules of structured programming.

Listing 2.5: Good Method Names

while (i t r . hasNext ())
{

i f (” foo ” . equa l s ((S t r ing) i t r . next ()))
{

return ; // HEY! Th e r e s an ea r l y return , here .
}

}

A method should do one job. And, as stated earlier for classes, you ought to be able to describe that job
in a crisp sentence or two. After youve done so, type it in as javadoc. Take switches and long series of if /
else if blocks as a warning sign that polymorphism might have served you better. Methods with more than a
very few parameters are difficult to use. If you have a method with more than three or four parameters you
might consider passing an object instead. If you have more than seven, you definitely need to do something
else. There is a delicate balance to strike between sanity-checking every argument passed to every method
and never testing your inputs at all. Too much checking chews into performance, too little means the code
will not be robust. Here are two criteria for achieving a happy medium: Arguments that are not used
directly by the method, but simply passed through to lower layers need not be checked. Arguments that are
used directly by the method ought to be checked, especially if the consequence of not checking them will be
something completely uninformative like a NullPointerException. You cannot assume that it will be easy to
produce a stack trace to home in on what code is producing the exception, and so the exceptions message
must serve that purpose. The second criterion is to ask whether the consequences of passing bad arguments
will be felt immediately or whether doing so will deploy a delayed-action time bomb. For example, passing

7

a null object that gets saved as a part of the objects state (even if its not used directly within the method
that received it) may put a nave object into an unstable state that may not reveal itself until much later in
the programs execution. This can be the very devil to debug. Your goal is to make certain that each method
that affects an objects state causes the object to make a transition from one valid state to another valid
state. You must do enough checking of arguments to insure that this is so. Consider a validate() method that
checks your state against your design criteria for valid object state. (Or an assertion of a validate() method.)
Youll typically need to put it in a finally clause to make sure it gets called, which makes it expensive. So you
cant blindly use this technique everywhere. (The programming-by-contract idea formalizes thinking about
what constitutes valid object stateits a useful concept.)

8

Chapter 3

Layout

3.1 File Template

Begin each file with the following bit of rote material. Just cut and paste it into your IDE so that it becomes
the first few lines of every source file:

Listing 3.1: A Good Code Header
/∗
∗ Id
∗ BROAD INSTITUTE SOFTWARE COPYRIGHT NOTICE AND AGREEMENT
∗ Sof tware and documentation are copy r i g h t 2005 by the Broad I n s t i t u t e .
∗ Al l r i g h t s are re s e rved .
∗
∗ Users acknowledge t ha t t h i s so f tware i s s upp l i e d wi thou t any warranty or suppor t .
∗ The Broad I n s t i t u t e i s not r e s p on s i b l e f o r i t s use , misuse , or
∗ f u n c t i o n a l i t y .
∗/

3.2 Documentation

All classes must have the following, minimum level of javadoc:

Listing 3.2: Javadoc Class Style
/∗∗
∗ One cr i sp , in f o rmat i v e sentence or noun phrase t ha t e x p l a i n s
∗ the concept modeled by the c l a s s .
∗
∗ This c l a s s i s [not] thread sa f e [because i t i s immutable] .
∗
∗ @author I . M. Coder
∗ @version $Revis ion$
∗/

class CrispConcept
{

public stat ic f ina l St r ing ID = ”Id” ;

You are encouraged to provide as much explanatory material as you feel is helpful following that first,
summary sentence. Information on algorithms and other information that will help a client make appropriate
use of the class is particularly welcome. (But see Stateful Interfaces, and Rules for Use, below.) Tell us

9

whether your class is thread-safe or not. Thread safety due to immutability is particularly well worth
mentioning. (It may warn a maintenance programmer off adding the set methods that you apparently forgot
to provide.) All methods must have the following, minimum level of javadoc:

Listing 3.3: Good Method Javadoc
/∗∗
∗ One cr i sp , in f o rmat i v e sentence or noun phrase t ha t e x p l a i n s
∗ what the method does .
∗
∗ @param parm1 Parm1 s e l e c t s the widge t to be f r o bn i c a t e d . Cannot be n u l l .
∗ @param parm2 Parm2 s p e c i f i e s the type o f f r o bn i c a t i o n to app ly .
∗ @return The f r o bn i c a t e d widge t .
∗ @throws Frobn ica t ionExcept ion Thrown i f widge t i s n t f r o b n i c a b l e .
∗/

For each parameter of reference type, tell us whether the reference may be null.

3.3 Imports

There is a balance between trying to maintain lengthy lists of classes imported one-by-one on the one hand,
and importing many packages wholesale using an asterisk on the other. It shouldnt often be a big problem:
there are exceptions, but a class that makes use of dozens of other classes may be trying to tell you that it
needs some redesign. The suggestion is to import classes explicitly from packages we have writtenespecially
those under active development. Also import explicitly when using just a few classes from a given package.
Try to restrict whole-package imports to well tested, slowly changing third party packages. (Packages in the
JDK, for example, are reasonable to import as a whole.)

3.4 Order of Class Members

Classes should be laid out consistently. You may put the member fields at either the bottom or the top,
but you must not sprinkle them throughout. There is an argument that a class ought to be ordered with
its public constants and constructors at the very top, its public methods next, and its internal stuff last,
since that concentrates at the very top what a programmer needs to know to make use of the class. This
isnt obligatory, but you may wish to give it some consideration. Nested classes go at the very bottom, after
everything else.

3.5 Make em Pretty

Use four space tabs. Dont omit braces around single statements. Line things up so that its clear what things
are on the same level. Give us enough white space to make it pretty.

10

Chapter 4

Design Considerations

If youre doing things right (and the DoD doesnt) design isnt a distinct phase that ends when coding begins.
Ideally, youll develop a comprehensive, top-down design before you begin coding. This may take more
than one napkin. Even so, youll face many decisions about implementation details that are not completely
specified by the overall design. In other words, its inevitable that youll be doing design while you code.
What follows are some coding standards for you to consider when doing this implementation-phase design.

4.1 Encapsulation

With very rare exception, all fieldsboth instance members and static membersshould be private. Protected
and default (i.e., package-scoped) access is like public access, only less so. (Making a change in such a field
still requires you to locate and analyze use of the field in indefinitely many files: for public fields you need to
look everywhere, for protected fields you need only scan everything that extends you, and for default-access
fields, you need only scan everything in the same package. This is arduous for those poor souls who must
try to maintain your code.) Always use the most restrictive permission consistent with the design of your
class. Dont make all of your internal methods protected in the vain hope that someday, some extending class
might need to tweak your internal state, and youll make it easy. Similarly, dont provide a getter and setter
for every piece of your internal state: the goal is to meet the contract of the interfaces you implement, and
to hide the details of how you do it. Even the most legitimately passive of objectsthe model objects youve
just hauled out of the relational databasewill likely have private, internal state that should not be exposed
directly to clients. (Check out all the hidden state in EJB entity beans, for example.)

4.2 Is-A versus Has-A

A subclass and its superclass have an Is-A (or specialization-generalization) relationship. A class and a
component of that class have a Has-A (or containment) relationship. If you have a crisp, clear idea of what
kind of things two classes represent, then simply saying to yourself Thing A is a (special kind of a) Thing B,
and Thing A has a Thing B (as one of its parts), will often make it clear what the relationship should be:
one of the two sentences may sound very odd. A Dog is an Animal. A Car has a Steering Wheel. So Dog
extends (or implements) Animal. (And not vice versa.) A Car has a Steering Wheel as one of its members.
Sometimes people try to save programming (or computer) time by adding properties to a Steering Wheel to
try to turn it into a Car. This is a very bad idea: think of the trouble youll have changing the Cars steering
wheel for a nice padded-leather model if the Car is the Steering Wheel. Think of the trouble that youll have
comparing Steering Wheels if some of them are Cars.

11

4.3 Redundant data

If you have only one copy of a given datum, it will be either right or wrong, but it wont be inconsistent with
other data. Guaranteeing consistency is a great deal more complex than guaranteeing accuracy. Checking
for and maintaining consistency among multiple copies of a datum often robs you of the efficiency you hoped
to gain by the denormalization; not checking for and not maintaining consistency is a very frequent source
of hard-to-fix bugs, and weird, unreliable program behavior.

4.4 Exceptions

Exceptions handle, well, exceptional conditions. Properly used, they provide a last-gasp attempt to allow
a robust program to clean-up and recover from catastrophic situations. Exceptions should not be thrown
frequently, certainly not as a part of the normal, expected flow of a program. Do not use them as a nifty hack
for implementing non-local transfer of control. (Exceptions are far more expensive than normal returns, so
the performance wizards wont be tempted to do this, anyway. For those who care more about well-designed,
maintainable code than about saving clicks, youll realize that code that relies on exceptions for normal flow
is just too difficult to comprehend and debug.) RuntimeExceptions are for even more rare, more catastrophic
situations from which recovery is unlikely, at best. In code which will be called by general clients outside
your package, catch and re-throw exceptions from the lower layers of code on which you depend to give a
more package-oriented explanation of the bad thing that happened. However, preserve information when you
do this: Wrap the original exception in a new exception that supplements rather than replaces the original
message. And respond to all flavors of printStackTrace with the nested exceptions stack trace (i.e., delegate
these methods to the nested exception). Never create exceptions with null messages.

4.5 Recovering External Resources

Java frees you from having to worry about memory as a resource. (Well, it reduces the worry, anyway.)
Therefore you should have oodles of time left over to make certain that you free other resources when youre
done with them. Two key external resources that you must make certain to release are open streams (which
chew up a precious operating system file handle), and database connections (which chew up precious DBMS
memory). The only really reliable way to make certain that these resources get freed is to create and use
them within a single try block, and to release them in the finally clause. Try to avoid designs that require a
class to maintain an open stream. One technique is to use an event-driven model to turn the file processing
upside down: you can still have a nicely modular and reusable class while processing the file within the scope
of a single block by using Listeners.

4.6 Stateful Interfaces and Rules for Use

Good interfaces are concise, comprehensive, and orthogonal. Concise means that there are no superfluous
operations that dont seem to fit the underlying abstraction, and that there is one good way of accomplishing
a given end, not a variety of ways from which you must choose. Comprehensive means that everything
you might need to do in manipulating the object has been provided for. And orthogonal means that each
method does something independent, and that any method can be called at any time. This is very difficult
to achieve, but is an ideal toward which we must strive. Its hard work. Poor interfaces are cluttered with
Rules for Use. If you are lucky, these rules are made explicit in documentation: Be sure to call this method
before calling that one, but never call this method if youve ever called that one, and do, please, remember
to call this one when youre all done. Needless to say, these interfaces are very difficult for clients to use
correctly. One particularly common form of this blight is the Stateful Interface: the object has a lifecycle,
and certain methods are appropriate only when the object is in some particular phase of the lifecycle. For
a simple example, read the javadoc for the java.sql.CallableStatement class. It describes how you must

12

call registerOutputParameter before calling execute, how, for maximum portability, you should not call
getMoreResults if you have called any of the getOutputParameter methods, and how you should remember
to call close when youre all done. (And you thought we were exaggerating!) If you cant seem to work out how
to avoid Rules for Use on your interfaces, you must at the very least make sure that each method call detects
misuse, and throws an appropriate exception or does something other than trash your internal state. Every
public method, if it affects object state at all, must transform the object from one valid, consistent state to
another valid, consistent state. If you need some ego-incentive to motivate you, consider this: Hard-to-use,
hard-to-understand, hard-to-maintain code is quickly replaced after you cease to maintain it. What kind of
legacy is that? Sometimes you can see several distinct patterns of use among the clients of an interface: they
might be telling you that you need to re-factor the interface into two separate interfaces.

4.7 Multithreading

Making your implementations thread-safe is a enormously complex issue. Unfortunately, almost all of us are
doing some work in multi-threaded environments (writing servlets, for example), and it’s an issue that we
are forced to confront. If you havent examined the issue for one of the classes youve implemented (either
because you dont anticipate its being used in a multi-threaded environment, or because the whole thing
makes your brain ache), please provide a javadoc comment for the class indicating that it is not thread-safe.
If youre not sure, its not safe! Dont just synchronize every method. Synchronization is far too expensive
to use carelessly. (Less so than it used to be, but still expensive. And it doesnt resolve all multi-threading
issues, anyway.) One way of beginning to address the issue of thread-safety is to understand what doesnt
need any special thread-safety code, and try to produce as much of that as you can. Here are a couple of
quick tips. Objects that can be seen only by a single thread are immune from the issue: If the only references
to an object are from local variablesthat is, if a reference to the object is never stored in an instance or static
fieldit will be visible only from the thread that creates it. Immutable objects are automatically thread-safe.
If you cant change it, you cant see it in an inconsistent, intermediate state.

4.8 Canonical methods

Most simple classes either do or are. In the EJB environment session beans are the do classes, and entity beans
are the are classes. In the model-view-controller paradigm, model objects are the are objects, controllers
are the do objects, and views are mostly are, but typically also have a little bit of do flavor. So, you see,
it does depend on what your definition of is is. The point of the distinction is that most of the are classes,
those often immutable little bags of independent state, usually need to override equals and hashCode to
behave properly. You must implement these basic object operations in each of your passive, data-bearing
classes; you may wish (or need) to implement them in the others. The ares are typically more useful
when Comparableimplementing that interface allows you to put them into sorted Collectionsso you ought
to consider that next. Being Cloneable and Serializable usually come for free (no code to write), so throw
those into the mix, too, unless theres a compelling reason not to. An example of a reason not to might be
that you need to maintain uniqueness at a level of abstraction higher than object identityyou dont want to
allow clients to make copies.

4.9 Performance

Your overall designyour selection of algorithms and data structures, for examplehas a far greater impact on
performance than any little hacks you can apply while implementing the code. So design for performance,
and implement for clarity. Nonetheless, the java compiler that most of us use can use a little help in doing
optimization. Dont expect order-of-magnitude performance gainsyoull get those by designing away I/O,
replacing searches with hashes, etc.these are percentage point tweaks. Move invariant code out of loops. For

13

example, many for loops can calculate their terminating condition once, before the loop starts, rather than
at each iteration through the loop.

Listing 4.1: Improvements to loops
for (int i i i = 0 ; i i i < s t r . l ength () ; ++i i i) // bad

int nnn = s t r . l ength () ;
for (int i i i = 0 ; i i i < nnn ; ++i i i) // good

Strength reduction: do a simple calculation to update the value of some variable using the value it has from
a previous trip through a loop, rather than from scratch each time.

Listing 4.2: Good looping practices
for (int i i i = 0 ; i i i < nnn ; ++i i i) // bad
{

double va l = pow(2 . , i i i) ;
. . .

}

double va l = 1 . ;
for (int i i i = 0 ; i i i < nnn ; ++i i i) // good
{

. . .
va l ∗= 2 . ;

}

Avoid some performance dogs in the SDK: Use the underlying Stream classes rather than Readers when
appropriate. Use the newer, non-synchronized collection classes rather than Vector and Hashtable. Penalties
Code that fails to follow these guidelines will be posted around the MIT campus, along with the authors
email address and an urgent request for comments.

14

